
Floodgate: Taming Incast in Datacenter Networks
Kexin Liu★, Chen Tian★*, Qingyue Wang★, Hao Zheng★, Peiwen Yu★,

Wenhao Sun△, Yonghui Xu△, Ke Meng△, Lei Han△, Jie Fu△, Wanchun Dou★, Guihai Chen★
★Nanjing University, China △Huawei, China

ABSTRACT
Incast occurs frequently in datacenter networks where a large
number of senders send data to a single receiver simultaneously,
which makes the last hop the network bottleneck. Incast can hurt
flows’ performance. However, congestion control protocols are not
effective at handling incast. One key insight is that it is too late to
handle incast packets after they have already piled up at the last
hop. Instead, we should avoid incast as early as possible. Inspired
by flood control in Hydrologic Engineering, we propose Floodgate,
a novel switch-based per-hop flow control to handle incast. Flood-
gate is compatible with existing congestion control protocols. We
integrate it with practical congestion control approaches such as
DCQCN, TIMELY, and HPCC. We evaluate Floodgate both in our
implementations and large-scale simulations. Compared with state
of the art, Floodgate reduces the buffer occupancy by a factor of
6.6×, as well as the queuing delay. Therefore, the average FCT and
tail latency are greatly reduced.

CCS CONCEPTS
• Networks → Link-layer protocols; Data center networks;
Programmable networks;

KEYWORDS
Datacenter, Flow Control, Incast

ACM Reference Format:
Kexin Liu, Chen Tian, Qingyue Wang, Hao Zheng, Peiwen Yu, Wenhao Sun,
Yonghui Xu, Ke Meng, Lei Han, Jie Fu, Wanchun Dou, Guihai Chen. 2021.
Floodgate: Taming Incast in Datacenter Networks. In The 17th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’21), December 7–10, 2021, Virtual Event, Germany. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3485983.3494854

1 INTRODUCTION
A large number of senders can send data to a single receiver simul-
taneously, which makes the last hop the network bottleneck. This is
called an incast. Incast scenarios occur frequently in the datacenter
when clients run web search application, Spark-like data-parallel
systems, TensorFlow-like machine learning systems, or large-scale
storage data backup [13, 15, 17, 40, 44, 47, 53, 55] (§ 2.1).

∗Chen Tian is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494854

Incast can hurt flows’ performance. First, a large amount of
incast traffic could lead to buffer built-up and even overflow, induc-
ing packet drops or Priority-based Flow Control (PFC). Timeout
retransmission induced by packet drop could hurt the network
throughput and result in long tail latency [4, 52]. PFC could lead
to poor application performance due to its congestion-spreading
characteristics, i.e., head-of-line (HOL) blocking, routing deadlocks,
and PFC pause frame storms [21, 30, 36, 55]. In addition, even if
packet loss/PFC does not occur, a large buffer occupancy induced by
incast leads to HOL blocking problem thus impairs the performance
of flows (§ 2.2).

Congestion control protocols are not effective at handling incast.
Recent years have seen numerous congestion control protocols for
better application performance. They can be classified into reactive
and proactive. Reactive approaches (e.g., DCTCP [4], DCQCN [55],
Timely [38], HPCC [32], PINT [7], Swift [31], and On-Ramp [35])
start at a line rate to send data packets and then react to congestion
signals from in-network switches or end-hosts. As for an end-to-
end congestion control protocol, it can only take effects when flows
last at least for one Round-Trip Time (RTT). Incast traffic may be
composed of small flows whose size is smaller than one Bandwidth-
Delay-Product (BDP) worth of data. With the rapid growth of link
bandwidth (i.e., 100 Gbps is now popular and 200/400 Gbps are on
the horizon), more flows can be smaller than one BDP [39], which
makes congestion control even less capable in handling incast.
Proactive approaches (e.g., ExpressPass [11], Homa [39], NDP [23],
pHost [16], and Aeolus [25]) are proposed to allocate bandwidth
for data before its transmission. However, they also struggle in
handling the first BDP unscheduled packets (§ 2.3).

One key insight is that it is too late to handle incast packets
after they have already piled up at the last hop. For congestion
control protocols, senders will not take action until the in-network
congestion signals are carried back. Buffer could have already been
saturated by incast traffic. Can we avoid incast as early as possible?

Inspired by flood control in Hydrologic Engineering [22, 50], we
propose Floodgate, a novel switch-based per-hop flow control to
handle incast. Intuitions are that we could control the transmission
of incast traffic via switches as early as possible. Rather than relying
on an end-to-end converge-based way to handle incast, it could
be more effective to tame its transmission via switches directly
(§ 2.4). It poses a set of potential challenges. (i) Incast traffic must be
recognized quickly and accurately, without hurting the performance
of other non-incast flows. (ii) Determine the volume of traffic the
switches should tame to reduce buffer occupancy at the same time
ensuring bandwidth utilization. (iii) Hardware resource, e.g., queue
and processing power on switches are limited, therefore we must
use them appropriately.

Floodgate solves a list of challenges. Floodgate leverages per-dst
window to identify incast traffic from other non-incast traffic. Then
transmission of incast traffic is tamed via window control before

30

https://doi.org/10.1145/3485983.3494854
https://doi.org/10.1145/3485983.3494854
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485983.3494854&domain=pdf&date_stamp=2021-12-03


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

Empty!

Src Dst1 Dst2

Incast traffic

Src Src

(a) Incast can hurt the network through-
put.

Non-incast traffic

Src Dst1 Dst2Src Src

(b) Taming the injection of incast can
improve the network throughput.

Figure 1: When encounters incast.

it overwhelms the buffer on congestion points. Meanwhile, incast
traffic is isolated from non-incast traffic to avoid HOL blocking (§ 3).
In addition, hardware resource limitations are also considered (§ 4).
Floodgate is compatible with existing congestion control protocols.

We implement Floodgate in Linux hosts with DPDK [14] (§ 5).
We integrate it with practical congestion control approaches such
as DCQCN [55], TIMELY [38], and HPCC [32]. We evaluate Flood-
gate both in our implementations and large-scale simulations [41].
The results demonstrate that Floodgate reduces buffer occupancy
in incast scenarios (including scenarios where incast flows mixed
with non-incast Poisson arrival flows) without bandwidth waste,
thus avoiding PFC. Meanwhile, flows’ average and tail latency
are significantly reduced. Besides, Floodgate does not hurt perfor-
mances in rarely congestion scenarios, i.e., pure Poisson arrival
flows. Compared with state of the art, Floodgate reduces the buffer
occupancy by a factor of 6.6×. The average FCT is reduced by
10.1%-98.1% and 99th-tail latency can be 1.1× - 207× lower (§ 6). In
addition, hardware feasibility of Floodgate is discussed (§ 7).

2 BACKGROUND AND MOTIVATION
2.1 Incast is not Uncommon
In datacenter networks, incast is not uncommon and can occur
intermittently across diverse applications [6, 18, 34, 54]. For web
search applications [52, 55], multiple query responses could be
returned to the same server simultaneously. In data-parallel systems,
e.g., Hadoop [1] and Spark [2], reduce phrase aggregates the output
data of many map servers. Therefore, reduce servers can usually
be the bottleneck of the network. In machine-learning systems,
the same thing happens when a large number of parameters are
aggregated by parameter servers. In ceph-like [49] object-based
distributed storage systems, each disk in servers is managed as an
independent object storage device (OSD). All OSDs form a full-
mesh overlay, where there are two persistent connections (i.e.,
two directions) between any two OSDs. A single server possesses
tens of thousands of connections. Therefore, a large number of
requests can be generated by a server simultaneously, which results
in corresponding response packets overwhelming the network.

2.2 Incast Hurts Performance
Incast causes packet drop. When incast occurs, the performance
of flows can be severely hurt. First, a large amount of incast traffic
could lead to buffer built-up and even overflow, inducing packet
drops. Timeout retransmission mechanism is usually used to handle
packet drops [4]. The timeout value is hard to tune. When the
timeout value is large, the network throughput could be hurt thus
resulting in long tail latency [4, 52]. While with a small timeout

0 1 2 3 4

Time (ms)

0

50

100

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

(a) DCQCN.

0 1 2 3 4

Time (ms)

0

50

100

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

incast

victim of incast

victim of PFC

(b) DCQCN+Floodgate.

Figure 2: Realtime bandwidth utilization under incast flows
mixed with non-incast flows scenarios. Non-incast flows are
generated with a load of 0.8 following the Poisson arrival
process (§ 6).
value, senders could retransmit unnecessary, which hurts the net-
work goodput [24].
Incast induces PFC. To avoid timeout retransmission and through-
put downgrade induced by packet loss, Priority-based Flow Control
(PFC) [27] is deployed in RoCEv2 [5] to ensure a drop-free data-
center network. PFC ensures that the buffer will not overflow by
forcing the upstream entity, i.e., switches or hosts’ NICs, to pause
the transmission of the corresponding ports. PFC is transmitted
by the receiver when the ingress queue length exceeds a preset
threshold, and the sender is resumed by the receiver when the
queue length decreases to a lower threshold. However, PFC pauses
traffic at a coarse-grained port or priority-class of ports granularity.
Thus head-of-line (HOL) blocking could be induced [55]. It can hurt
the network throughput and flows’ FCT. Moreover, congestion-
spreading characteristics of PFC can lead to routing deadlocks, and
PFC pause frame storms [21, 30, 33, 36], etc.
Incast causes HOL blocking. In addition, even if packet loss/PFC
does not occur, a large buffer occupancy induced by incast leads
to HOL blocking problem thus impairs the performance of flows.
Figure 1(a) demonstrates a simple example to illustrate the problem.
Incast happens when many hosts transmitting traffic to the same
destination host 𝐷𝑠𝑡2 simultaneously. Large queue builds up at the
core switches and the Top-of-Rack (ToR) switch connected to the
destination host. When non-incast flows whose destination is 𝐷𝑠𝑡1
arrive, they can encounter a long queuing delay on the sharing path
with incast flows, i.e., the core switches. Non-incast flows suffer
HOL blocking caused by incast flows. While the queue on the core
switch builds up, the queue on 𝐷𝑠𝑡1’s last hop is empty, i.e., the
bandwidth of 𝐷𝑠𝑡1 gets wasted.

We conduct a simulation for DCQCN where incast flows are
mixed with non-incast Poisson arrival flows to demonstrate the
problem of incast and PFC (§ 6.1). Figure 2 demonstrates the real-
time throughput. Throughput is monitored on the receiver hosts.
We separate Poisson flows sharing the same destination ToR with
incast flows (victim flows of incast) from other Poisson flows (victim
flows of PFC). Victim flows of incast start to be received by hosts
after a long delay, i.e., 1.8ms. It indicates that these flows are HOL
blocked by incast traffic and suffer a long queuing delay in network.
For other flows, a significant throughput downgrade also occurs
between 1ms and 2ms. This is because PFC frame storm happens
and causes cascaded pauses on switches. These flows are victim
flows of PFC which also suffer HOL blocking.
2.3 Congestion Control Alone is not Effective
Reactive protocols. Reactive protocols start at a line rate to send
data packets and then react to congestion signals (ECN bits in

31



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Upstream Switch Downstream Switch

 Credit generation

Data

Credit

 Per-dst window control
 VOQ allocation

Figure 3: Floodgate framework

DCTCP [4] andDCQCN [55], RTT variation in Timely [38], Swift [31],
On-Ramp [35], and INT measurement in HPCC [32] and PINT [7])
from in-network switches or end-hosts. A portion of packets, i.e.,
generally limited to no more than one Bandwidth-Delay-Product
(BDP) worth of data is transmitted before congestion control taking
effect. Therefore, congestion control can only take effects when
flows at least last for one Round-Trip Time (RTT). Incast traffic
may be composed of small flows whose size is smaller than one
BDP. With the rapid growth of link bandwidth (i.e., 100 Gbps is now
popular and 200/400 Gbps are on the horizon), more flows can be
smaller than one BDP worth of data [25, 39]. Therefore, more flows
could have been injected into the network even before congestion
control starts to kick in. Reactive congestion control becomes less
capable of handling incast.
Proactive protocols. There is another category of congestion
control called proactive protocols. Bandwidth used by data packets
is allocated by token. A receiver schedules the transmission of
token for different flows. When a sender receives a token, it can
send a packet, called scheduled packet. In ExpressPass [11], packet
transmissions are totally scheduled. However, it costs the sender
one RTT to notify the receiver before receiving tokens. It wastes
bandwidth and hurts the performance of small flows [25]. A natural
way to fix the problem is to send unscheduled packets at the first
RTT. In Homa [39], NDP [23], pHost [16], and Aeolus [25], a portion
of unscheduled packets, i.e., usually one BDP, can be sent when a
new flow arrives. Because of the involution of unscheduled packets
which can not be controlled in advance, proactive protocols also
face incast problems.

2.4 Intuition
In Hydrologic Engineering, to control flood, adjustable gates are
used to control water flow in flood barriers, reservoirs, or rivers,
working as a part of flood bypass systems [22, 50]. Therefore, the
water levels in downstream main rivers or canal channels that
aggregate upstream traffic can be lowered, thus preventing water
flooding.

We are inspired by flood control in Hydrologic Engineering.
Instead of handling incast at the last hop, the traffic pressure should
be reduced as early as possible. Intuitions are that we could con-
trol the transmission of incast traffic via switches directly. Every
switch takes its responsibility to tame and store a portion of incast
traffic. Hence, incast traffic is shared among switches it passing
through. Thus buffer occupancy on the network bottleneck could
be significantly reduced. Figure 1(b) illustrates our naïve idea. Incast
traffic is tamed by switches it passing through. All switches take
their responsibilities to buffer in-network traffic passing through.
Thus, the buffer on the aggregation point of incast traffic, i.e., core
switches and the destination ToR, is not saturated aggressively.
For that buffer occupancy on core switches is reduced, non-incast
flows can pass through it quickly, therefore the bandwidth of non-
incast flows’ last hop is well utilized. Figure 2(b) demonstrates that

when Floodgate, a protocol adapted from the intuition, is applied,
throughput of flows is not hurt either by incast. At the same time,
PFCs are not triggered.

3 FLOODGATE OVERVIEW
3.1 Basic Idea
Intuitions are that by controlling the transmission of incast traffic
via switches, maximum buffer occupancy on the last hop could
be reduced significantly. The challenge is how to recognize incast
traffic quickly and accurately, without hurting the performance
of other non-incast flows. By solving the challenge, we propose
our strawman Floodgate design, a switch-based hop-by-hop flow
control. The basic idea is to leverage per-dst window on switches to
identify and control incast traffic. Furthermore, incast traffic should
be isolated from non-incast traffic by switches, to make sure that
non-incast traffic will not be HOL blocked by incast traffic and
could pass through the switch smoothly.

3.2 A Strawman Design
Incast identification. Floodgate’s switch uses a per-dst sending
window to control the transmission of traffic for each receiver
host. In general, with the load-balanced network, flows sharing the
same source and destination pair pass through the same congestion
point in the network (or different points with the same degree of
congestion, see online Appendix [41] for more details). Therefore,
per-dst granularity is enough to handle traffic traversing different
congestion separately. When Floodgate’s switch receives a data
packet from an ingress port, it can be forwarded to its downstream
switch only when there is sending window left. When a data packet
is forwarded, the corresponding sending window is decreased by
one. At the same time, the switch immediately generates a credit
packet to its upstream switch. The meaning behind this is that
when a packet is successfully transmitted, there could be more free
space for another packet. Correspondingly, when a switch receives
a credit packet from its downstream switch, the sending window
of the corresponding destination host is incremented by one.

The window is a probing mechanism to sniff whether the flow
is encountering an incast collapse or not. For non-incast flows,
the sending window does nothing on their transmission. Data
packets are always forwarded successfully by the downstream
switch. Hence, credit packets are received in time and the sending
window is plenty every time a data packet arrives. For incast flows,
the returning rate of credits is limited by the last hop ToR, i.e.,
the network bottleneck. As a result, sending window can not be
recovered in time. Therefore, the transmission of incast traffic is
controlled. In this way, the per-dst sending window is a traffic
control mechanism as well as an incast identification mechanism.
In particular, when data packets arrive at their last hop ToR, it
is in vain to buffer them because it does nothing to the network
state. Hence, Floodgate’s last hop ToR does not maintain a sending
window, and the servers do not need to generate credit packets for
the last hop ToR connected to them.

The size of sending window indicates how strictly a destination
will be recognized as encountering an incast. Given that per-hop
credit is used, the sending window can be initialized with a small

32



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

value, i.e.,𝑚 ∗ 𝐵𝐷𝑃𝑛𝑒𝑥𝑡𝐻𝑜𝑝 , where 𝐵𝐷𝑃𝑛𝑒𝑥𝑡𝐻𝑜𝑝 is the bandwidth-
delay product between the switch itself and its next-hop down-
stream switch, and𝑚 is a parameter that stands for how aggressively
Floodgate recognizes a flow as encountering an incast.
Incast isolation. After a flow is identified as encountering an
incast, following data packets sharing the same destination host
will not be forwarded until the sending window is recovered. A
dedicated queue should be used to store these data packets to avoid
blocking other non-incast traffic. Rather than using physical egress
output queue, Floodgate leverages Virtual Output Queue (VOQ) to
store incast traffic. Traditionally, a VOQ is a collection of buffers
that receive and store traffic destined for one output queue on one
egress port [10, 12, 26, 29]. Instead of directly sending packets to
the egress queue, a VOQ does not transmit packets until the egress
port has the resources to forward the traffic. In Floodgate, data
packets transmitting to the same receiver hosts are allocated with
a dedicated VOQ. It is aimed at isolating traffic passing through
different congestion points.
3.3 Practical Challenges
The strawman design gives a leg up with incast scenarios where
congestion control protocols struggle with. However, it does not
take switches’ cost and network overhead into consideration.
Per-packet credit is costly. In our strawman design, an ideal
way to update sending window is adopted. When a data packet is
forwarded to the switches’ egress queue, a credit is sent back to
its upstream switch immediately. However, it is costly for switches
to generate credit packets at a high rate, for that it consumes the
pps (packets per seconds) of switches. Besides, per-packet credit
consumes network bandwidth.
The number of VOQs is limited. Ideally, a switch can allocate
a dedicated VOQ for each destination host in advance. However,
there can be tens of thousands of hosts in the network, and the
hardware resource for switches is limited. Therefore, the usage of
VOQs should be more conservative.

4 FLOODGATE DESIGN
In this section, we solve practical challenges on switches’ hardware
resource limitations and present our final design of Floodgate.
Besides, we answer the question that how much volume of traffic
switches should tame to ensure bandwidth utilization when reduces
buffer occupancy. Floodgate is a switch-based per-hop flow control
protocol. Floodgate’s design is composed of downstream switch
parts and upstream switch parts, as demonstrated in Figure 3. The
downstream switch generates credit packets to update the per-dst
window of the upstream switch. The upstream switch maintains
per-dst window to identify and tame the transmission of incast
traffic. Meanwhile, it should allocate VOQs for recognized incast
traffic to isolate them from non-incast traffic.
4.1 Downstream Switch Algorithm
Transmit credit packet. Instead of generating credit at a per-
packet granularity, Floodgate aggregates credit packets. A Flood-
gate’s switch leverages a timer 𝑇 for each ingress port. Timer 𝑇
records the elapsed time since last sent back credits. It determines
the credit generation granularity. At the same time, Floodgate’s
switch records the number of packets that have already been for-
warded but have not been returned with credits for each destination
host from an ingress port. When the elapsed time reaches the preset

value, a credit packet is sent back from the ingress port to the
corresponding upstream switch, containing a pair of destination
host’s IP and the number of credits, i.e., < 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝐼𝑃, 𝑐𝑟𝑒𝑑𝑖𝑡𝑠 >.
And the timer is reset. When there are no credits to be transmitted
(e.g., no corresponding traffic has been forwarded), the transmission
of the credit packet is skipped.
Delay transmission of credit.When the elapsed time since the
last sent credit packets reaches the preset value, a credit packet is
transmitted to the corresponding upstream switch. The assumption
behind this is that when data packets are successfully forwarded to
the next hop, there could be equivalent free space for the following
data packets. However, when incast happens, VOQ can build up.
The transmission of the corresponding credit could be delayed
because it is burdensome for the VOQ to absorb more packets.
Floodgate proposes delayCredit mechanism. Only when the VOQ
length of the corresponding destination does not exceed threshold
𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 will Floodgate’s switch generates credit packets. Other-
wise, the credit transmission is skipped, and the timer is reset. It
avoids unnecessarily buffer buildup.

4.2 Upstream Switch Algorithm
Initialize sending window. Because of credit aggregation, the
switch’s per-dst sending window for each destination host can not
be simply initialized to𝑚 ∗𝐵𝐷𝑃𝑛𝑒𝑥𝑡𝐻𝑜𝑝 like the strawman. Instead,
as the timer𝑇 increases, the initial value of sending window should
also be increased to make sure that bandwidth will not get wasted.
To utilize the network, the switch’s sending window is initialized
to 𝐵𝐷𝑃𝑛𝑒𝑥𝑡𝐻𝑜𝑝 + 𝐶𝑜𝑢𝑡 ∗ 𝑇 , where 𝑇 is the transmission interval
of aggregated credit packet, and 𝐶𝑜𝑢𝑡 is the switch’s egress port
bandwidth. Recall that 𝐵𝐷𝑃𝑛𝑒𝑥𝑡𝐻𝑜𝑝 is the BDP between the switch
itself and its next-hop downstream switch (§ 3.2). Hence, when no
congestion occurs, the sending window will not be used up before
a credit packet is received.
Update per-dst window. When a data packet is forwarded to
an egress queue, the sending window for the destination hosts is
decreased by one. When a switch receives a credit packet from
its upstream, it parses the destination hosts and the number of
credits in it. The sending window of the corresponding destination
host is increased by the number of credits. At the same time, the
transmission of data packets in the corresponding VOQ is triggered.
Allocate VOQs for incast flows dynamically. In Floodgate, VOQ
resources are pre-allocated statically, and are allocated for incast
traffic dynamically. When a data packet is received, the switch
first checks whether the data’s destination host has already been
allocated with a VOQ. If so, it indicates that the corresponding
destination is encountering an incast. Therefore, the data packet is
pushed into the corresponding VOQ. Otherwise, the switch checks
whether there is sending window left. If the sending window is
adequate, the data packet is forwarded to the egress queue directly.
Otherwise, the switch chooses an empty VOQ (if possible) according
to the VOQ bitmap (§ 7.2) and pushes the data packet into it. Today’s
datacenter switches can support up to thousands of VOQs [10, 12,
26, 29]. For that only incast traffic uses VOQs, and scenarios where
thousands of incast occur simultaneously can be rare, VOQs will not
be used up in most scenarios. For robustness, we still consider this
rare scenario. When the usage of VOQ reaches the upper bound, a
hash function, e.g., Cyclic redundancy check (CRC) [20, 42] is used

33



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

ToR

Leaf

Spine

A B

PodA

T0

T1

B

B A

T0

T1 B

A

A

PodB

B

A Pkts sent to host A

Pkts sent to host B

Figure 4: Deadlock problem.

to get an appropriate VOQ to enqueue the data packet by using the
destination IP in its header as the hash key. In our evaluation, we
found that dozens of VOQs are basically enough § 6.1.
VOQ grouping. Given that the number of VOQs is limited, corner
cases could occur where packets with different destination hosts
queue in the same VOQ. Without specific handling, a deadlock
could occur. Figure 4 demonstrates leaf switches’ VOQ queuing
state when a deadlock occurs. Hosts belonging to pod A transmit
packets to host B, while hosts belonging to pod B transmit packets
to host A. At𝑇 0, a portion of packets whose destination is host B is
forwarded by leaf switch A, while the left packets are buffered
in leaf switch A because of sending window control. It is the
same case for leaf switch B. At 𝑇1, packets whose destination is
host B arrive at leaf switch B, queuing behind packets waiting for
credits whose destination is host A. However, these packets whose
destination is host A would not receive credits. Because leaf switch
A would not send credits to its downstream core switch. For that
data whose destination is host A is also blocked in leaf switch A
by data with destination host B, which waits for credits from its
upstream. Consequently, the core switch would not send credits
to its downstream leaf switch B. Briefly speaking, hold and wait
happens, i.e., packets occupy the buffer in the leaf switch B and
wait for credits from upstream switches, while credits cannot be
received because of occupied buffer in the leaf switch A. They form
a cyclic dependency, therefore results in a deadlock.

To fix the deadlock problem, Floodgate breaks hold and wait
condition. The root cause of hold and wait is that upstream and
downstream traffic of leaf switches are mixed into the same VOQ.
Downstream traffic for a leaf switch stands for data whose destina-
tion host belongs to its pod, while upstream traffic stands for data
whose destination belongs to other pods. When these two kinds
of traffic are isolated into two dedicated VOQs, packets will not be
held in the buffer endlessly. Downstream traffic can be forwarded
smoothly and then the corresponding credits can be sent back to
its upstream switch. Generally speaking, in Floodgate’s middle-
layer switches which could forward downstream/upstream traffic
simultaneously, i.e., leaf in three-tier topology, VOQs are classified
into two groups. A portion of VOQs are reserved for downstream
traffic, the left are for upstream traffic.
4.3 Miscellaneous Detailed Designs
Handling (rare) packet loss. Floodgate significantly reduces the
buffer occupancy; thus, buffer overflow could be rare. However,
there could be corner cases where data/credit loss is induced by
configuration errors in switches or link failure. This can result in

window vanishing which can hurt the network throughput. Flood-
gate uses a specific incremental sequence number (PSN) between
Floodgate’s switches to detect packet loss and achieve fast recovery.
Floodgate’s switch maintains the PSN of the next send data packet
and last sent/received data/credit packet for each pair of ingress
port and destination host. The credit packet will pick back the last
PSN of the corresponding destination’s data packets of this egress
port. The difference between 𝑛𝑒𝑥𝑡_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎 and 𝑙𝑎𝑠𝑡_𝑟𝑒𝑐𝑣_𝑐𝑟𝑒𝑑𝑖𝑡
is the inflight packets and the remaining sending window is equal to
𝑖𝑛𝑡𝑖𝑎𝑙𝑤𝑖𝑛 − 𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 . And a relatively large timeout is used to avoid
the loss of the last continuous data/credit packets. If the elapsed
time since last receiving the credits from its downstream switch
reaches the timeout value, the switch generates a switchSYN packet
to the downstream switch. When switchSYN is received, the switch
generates credits with PSN to assist its upstream switch to handle
packet loss.
Hosts’ support (optional). Floodgate can reallocate the in-network
traffic from the congestion point to other points, thus relieving the
buffer pressure on the congestion point. However, it can not reduce
the total volume of in-network traffic. Only with the help of hosts
can Floodgate solves the dilemma where the in-network traffic
injection overwhelms the overall buffering ability of switches. We
propose a one-hop per-dst PAUSE mechanism to reduce the in-
network traffic. When a Floodgate’s ToR receives a data packet
whose VOQ queue length exceeds a threshold 𝑡ℎ𝑟𝑒𝑜 𝑓 𝑓 , a special
PAUSE frame, i.e., called dstPause, is sent back to source hosts,
piggybacking the corresponding destination IP. Meanwhile, NICs
maintain per-dst queues to pause the corresponding traffic. When
a host receives a dstPause, it parses the frame and pauses the flow
whose destination matches. When the VOQ queue length goes
beneath a threshold 𝑡ℎ𝑟𝑒𝑜𝑛 , a RESUME frame called dstResume is
sent back to hosts to resume the transmission of the corresponding
traffic. Note that the dstPause/dstResume frame is only sent by first
hop ToR to source hosts connected to them, therefore no deadlock
or pause frame storm would happen. Meanwhile, they operates at a
per-dst granularity, no HOL blocking on hosts would occur. 𝑡ℎ𝑟𝑒𝑜 𝑓 𝑓
and 𝑡ℎ𝑟𝑒𝑜𝑛 can be set to a relatively small value, e.g., one-hop BDP.
We add per-dst PAUSE in strawman Floodgate to explore its ideal
performance.

5 TESTBED EXPERIMENTS
5.1 Implementation
We prototyped Floodgate Software Switch (FSW) on commodity x86
servers based on BESS [8], a scalable software switch architecture
that uses DPDK [14] to accelerate data plane packet processing.
As is shown in Figure 5, FSW is divided into a control plane and a
data plane. Among them, the control plane is responsible for the
management of the Poll-Mode Driver (PMD) Port, the configuration
of VOQ queues, the packet routing, and the pipeline monitoring
for queuing length information. The data plane is composed of the
following three modules:
• Merge module aggregates packets from multiple input ports
to allow for serial processing of all packets through a single
pipeline. This is compatible with the current switch design [9],
and the pipeline design makes it easy to share switch resources
such as flow tables and VOQ queues.

34



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

Merge

Routing 
Module

Y

Data Plane

VOQ
Config

Port 
Manager

VOQ Exists?

VOQ 
Status

N

N

Y
Window Left?

SH

Window 
Status

Fwd

Flo
o

d
gate

Control Plane

Pipeline
Monitor

VOQ Pool

Egress Queue

Figure 5: Overview of Floodgate software switch architecture.
H denotes a hashmodule, which is used to select a VOQqueue
by hashing the destination IP address. S denotes a queue
scheduler, responsible for moving packets from VOQ queues
to the next module according to per-dst window status.

Avg 99th
0

25

50

75

100

F
C

T
 (

m
s
)

w/o Floodgate

w/ Floodgate

(a) FCT of non-incast flows.

ToR-Up Core ToR-Down
0.00

0.25

0.50

0.75

1.00

M
a
x
 B

u
ff

e
r 

(M
B

)

(b) Buffer occupancy.

Figure 6: Performance of testbed experiments under incast-
mix scenarios. ToR-Up denotes ToRs’ all ports connected to
their downstream switches, i.e., the first hop of packets. Ac-
cordingly, ToR-Down denotes the ToRs’ all ports connected
to hosts, i.e., the last hop of packets.

• Floodgate module implements the main function of the Flood-
gate switch such as per-dst window control and VOQ queue
management (§ 4). There is a scheduler that scans multiple VOQs
in a round-robin (RR) fashion (see details in § 7.2) and forwards
the packet if there is enough window for the dst IP of the packet.

• Forwarding (Fwd) module is responsible for the network layer
forwarding function, which matches and forwards packets to
the queue of the corresponding egress port.
In the experiment, we use the BESS script to install static for-

warding rules from the control plane of FSW. We deployed FSW on
multiple servers. Table 1 lists the hardware and software configura-
tions in our experiment environments.

5.2 Testbed Evaluation
Topology. The testbed topology consists of one core switch, and
three ToR switches. Each ToR switch is connected with two servers
via 10Gbps links, and three ToR switches are connected to the Core
switch via 20Gbps links (rate of the NIC interface is limited from
40Gbps to 20Gbps by the BESS scheduler’s rate limit function). The
base BDP is 45KB.
Floodgate improves flows’ performance. We evaluate Flood-
gate when incast flows are mixedwith non-incast flows. Four source
hosts transmit cross-rack BDP-sized flows to one destination host
simultaneously to generate incast traffic patterns. And non-incast
Poisson arrival flows are transmitted among hosts except for the
destination host of incast. Following [32, 35], a per-flow sending

Table 1: Experiment environments.

Hardware CPU Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz

NIC Intel X710 10Gbps
Intel XL710 40Gbps

Software DPDK 19.11.4

100 102 104 106 108

Byte

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Memcached

Web Server

Hadoop

Web Search

Figure 7: Flow size distribution of typical workloads.

window on hosts is added to emulate the first-RTT actions of
DCQCN (§ 6). Figure 6(a) demonstrates the FCT performance of
w/o and w/ Floodgate. Without Floodgate, non-incast flows are
HOL blocked by incast flows, suffering a large queuing delay. By
leveraging Floodgate, the average FCT is reduced by 30.6%, and the
99th-tail latency is reduced by by a factor of 1.6×.
Floodgate reduces the buffer occupancy. Figure 6(b) shows the
maximum buffer occupancy of w/o and w/ Floodgate. Without
Floodgate, data packets are mainly buffered on the core switch and
destination ToR, i.e., ToR-Down. By leveraging Floodgate, incast
traffic is tamed via per-dst window, therefore the buffer on ToR-Up
is slightly larger. Meanwhile, the maximum buffer occupancy on
ToR-Down and core switches is reduced by a factor of 17.2× and
1.8×, respectively.
6 SIMULATION EVALUATION
In this section, we use large-scale NS3 simulations to evaluate
Floodgate [41]. We integrate strawman ideal Floodgate (ideal for
short) and final practical Floodgate (Floodgate for short) with con-
gestion control approaches such as DCQCN [55], TIMELY [38], and
HPCC [32]. The author’s contributed simulation codes are used in
our evaluations [3]. Following [32, 35], a per-flow sending window
on hosts is added to DCQCN, TIMELY, and HPCC, limiting the
in-flight packets of a flow. Besides performance comparison, we
also validate major design points and parameter selection. For space
limitation, some results of TIMELY and HPCC are omitted given
that similar trends as in DCQCN are observed. Unless otherwise
specified, we use DCQCN as our main comparison protocol.

In summary, under scenarios where incast flows are mixed with
non-incast Poisson arrival flows, Floodgate tames the transmission
of incast flows via switches thus reducing buffer occupancy signifi-
cantly and eliminating PFC, without bandwidth waste. In addition,
incast flows are isolated from non-incast flows, therefore further
speeding up non-incast flows’ FCT. Under pure Poisson scenarios,
Floodgate does not hurt flows’ performance (Appendix A.2). Al-
though Floodgate can not achieve as small buffer occupancy as the
ideal design, it can achieve significant improvements compared to
state-of-the-art congestion control protocols as well.
Topology.The topologywe used is a 2-level leaf-spine non-blocking
network that contains 4 core switches, 10 ToRs, and 160 hosts, i.e.,
16 hosts per rack (similar to the topology used in [39]). Each ToR
connects its hosts and cores via 100/400Gbps links, respectively.
The propagation delay for each hop is 600ns. The base RTT is

35



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Avg 99th
0.0

0.1

0.2

0.3

F
C

T
 (

m
s
)

Memcached

Avg 99th
0.0

0.2

0.4
Web Server

Avg 99th
0.00

0.05

0.10

0.15
Hadoop

Avg 99th
0.0

0.5

1.0

Web Search

0

1

2

DCQCN

DCQCN+ideal

DCQCN+Floodgate

0

1

2

0

1

2

0

5

10

15

(a) DCQCN+Floodgate.

Avg 99th
0.0

0.1

0.2

0.3

F
C

T
 (

m
s
)

Memcached

Avg 99th
0.0

0.2

0.4

Web Server

Avg 99th
0.00

0.05

0.10

0.15

Hadoop

Avg 99th
0.0

0.5

1.0

Web Search

0

1

2

TIMELY

TIMELY+ideal

TIMELY+Floodgate

0

1

2

0

1

2

0

5

10

15

(b) TIMELY+Floodgate.

10 2 10 1 100

FCT (ms)

0.0

0.5

1.0

CD
F

Memcached

HPCC
HPCC+ideal
HPCC
+Floodgate

10 2 10 1 100

FCT (ms)

0.0

0.5

1.0
Web Server

10 2 10 1 100 101

FCT (ms)

0.0

0.5

1.0
Hadoop

10 2 10 1 100 101

FCT (ms)

0.0

0.5

1.0
WebSearch

(c) HPCC+Floodgate.

Figure 8: Average and 99th-tail FCT of Poisson flows under incastmix scenarios.

1006 × 10 1 2 × 100 3 × 100

FCT (ms)

0.0

0.5

1.0

CD
F

incast
DCQCN
DCQCN+ideal
DCQCN
+Floodgate

10 2 10 1 100

FCT (ms)

0.0

0.5

1.0

CD
F

victim of incast

10 2 10 1 100

FCT (ms)

0.0

0.5

1.0

CD
F

victim of PFC

Figure 9: FCT of flows under
Web Server incastmix sce-
nario.

5.1𝜇s, and the base BDP is 64KB. Besides, we also use a 3-tier fat
tree topology (k=8), consisting of 32 edge switches, 32 aggregation
switches, 16 core switches, and 128 hosts (4 hosts per edge, 16 hosts
per pod) to evaluate Floodgate’s performance [11]. Without special
instructions, we use the 2-tier topology.
Workloads. Unless otherwise specified, we generate non-incast
flows following a Poisson arrival process with a load of 0.8 and
periodic incast flows whose size is between 30 MTU and 40 MTU
with a load of 0.5 (the average load of the incast destination host).
For Poisson arrival flows, we use four workloads, Memcached [39],
Web Server [43], Hadoop [43], and Web Search [4]. The flow size
distributions are shown in Figure 7. Memcached is composed of
small flows, where most of the flows are smaller than 1KB. The left
three workloads are large flows mixed with small flows where a
small ratio of large flows dominates the average flow size.
Parameters.We have a set of default settings in evaluations. Here,
credit timer 𝑇 = 10𝜇s, 𝑑𝑒𝑙𝑎𝑦𝐶𝑟𝑒𝑑𝑖𝑡 threshold 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑡 = 10BDP is
set for Floodgate. And𝑚 = 1.5 is set for the ideal design. Besides,
the maximum number of VOQs can be used is set to 100, but Flood-
gate only uses one VOQ in most cases. A dedicated subsection dis-
cusseswhy these values are used (§6.5). For DCQCN/TIMELY/HPCC,
the recommended parameter settings are used. Dynamic PFC thresh-
old is used and 𝛼 = 2. The switch buffer capacity is 20MB.
Metrics. We have three major performance metrics: (i) maximum
switch buffer usage, (ii) average/99th-tail FCTs, and (iii) number of
triggered PFC. We also monitor queuing time and maximum port
buffer usage at a per-hop granularity to analyze the buffer reallo-
cation that Floodgate brings about. We run experiments ten times.
Results show similar trends. The standard deviation is omitted given
that it is relatively small.

6.1 Simulations Under Incastmix Scenarios
Floodgate improves flows’ performance. Figure 8 shows the
average and 99th-tail FCTs of Poisson flows across different work-
loads under incastmix scenarios. (Floodgate does not affect the FCT
of incast flows, for space limitation, we leave more results of incast
flows’ FCT in Appendix A.1.) Floodgate reduces the average FCTs
by 10.1%-98.1%. And the 99th-tail latency is 1.1× - 207× lower. The
improvement comes from significantly reducing buffer occupancy
to eliminate PFC. Meanwhile, non-incast flows are not HOL blocked
by incast flows anymore via VOQ isolating.
(i) DCQCN. By leveraging Floodgate, the average and tail FCT of
Memcached and Web Server are significantly reduced. Memcached
workload is mostly composed of flows smaller than one MTU,
which can be greatly hurt by a long queuing delay. By leveraging
Floodgate, flows’ queuing delay is greatly reduced. Therefore, the
performance of Memcached is significantly improved. For Web
Server, without Floodgate, the throughput of flows are greatly
hurt by incast, as well as PFC pause frame storm (as shown in
Figure 2). To dig into the performance improvement for victim
flows of incast/PFC, Figure 9 shows the FCT distribution of them,
respectively. By leveraging Floodgate, flows do not suffer HOL
blocking caused by incast and PFC. Therefore, the performance
of victim flows of incast/PFC is significantly improved, without
compromising the performance of incast flows. For Hadoop and
Web Search workloads, the improvement is less obvious. This is
because non-victimized large flows dominate the average/tail FCT.
However, the FCT of victim flows of incast are greatly reduced (see
Figure 22 in § A.1).
(ii) TIMELY. Floodgate’s improvement for TIMELY is similar to that
for DCQCN. Note that the tail latency of TIMELY+ideal under Web
Server is a little larger than TIMELY+Floodgate. This is because

36



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

5

10

15

M
a
x
 S

w
it

c
h
 B

u
ff

e
r

(M
B

)

Memcached

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

5

10

15

Web Server

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

5

10

15

Hadoop

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

5

10

15

Web Search

Figure 10: Maximum buffer occupancy.
Table 2: PFC triggered time of DCQCN.

Memcached Web Server Hadoop Web Search
Host (us) 0 10594.0 0 0
ToR (us) 0 3999.5 0 0
Core (us) 6253 6578.9 6508.6 37152.16

credit packets of ideal design consume more bandwidth (see in
Figure 18).
(iii) HPCC. To make it more clear, FCT distribution is used to
present the improvement made on HPCC. Similarly, the improve-
ment on Memcached and Web Server workloads is more significant.
Floodgate reduces the buffer occupancy. Figure 10 shows the
maximum buffer occupancy across all four workloads. By lever-
aging Floodgate, the maximum buffer occupancy is reduced 2.4×
- 3.7×. This is because Floodgate tames the transmission of incast
flows by leveraging per-dst window control. Each switch takes its
responsibility to hold back a portion of in-network incast traffic,
relieving the pressure on the network bottleneck, i.e., the last hop
destination ToR. A by-product of Floodgate is that in-network traffic
is distributed more uniformly. As expected, the ideal approach can
reduce the buffer occupancy more effectively, because the initial
sendingwindow can be set to a smaller value. It has been proved that
the maximum buffer occupancy of original DCQCN is proportional
to the number of flows, while with Floodgate, the value is decreased
to be proportional to the number of core switches, which can reduce
the buffer occupancy by an order of magnitude (see more details in
online Appendix [41]).

The buffer occupancy is made up of two parts, i.e., the buffer used
by incast flows and non-incast Poisson flows. This is the reason
why buffer occupancy of Web Server, Hadoop, and Web search is a
little larger than Memcached, where non-incast large flows in these
workloads occupy a portion of buffer and Floodgate rarely affects
them. This is the part left for congestion control protocols.
VOQ usage. We monitor the maximum number of VOQ usage and
find that at most one VOQ is used simultaneously by Floodgate’s
switch. Therefore, no HOL blocking occurs because the number
of VOQ used does not exceed the upper bound. And the VOQ is
exactly used to buffer packets whose destination host is suffering
incast. It means the incast flows are identified accurately, with no
non-incast flows are wrongly recognized as incast flows.
PFC triggered time. DCQCN triggers PFC while Floodgate does
not, and Table 2 shows the total PFC triggered time of DCQCN.
Under all four workloads, PFC is triggered by incast. Particularly,
under Web Server workload, core switches, source ToRs, and hosts
are all paused by PFCs. In the beginning, the destination ToR is
the most congested point, and it sends back PFCs to its upstream
core switch. The core switches’ egress ports connected to the
incast destination ToR are paused. Meanwhile, incast flows are
still flooding into core switches. Therefore, the buffer occupancy on

ToR-Up Core ToR-Down
0

5

10

15

20

M
a
x
 B

u
ff

e
r 

(M
B

)

Web Server

ToR-Up Core ToR-Down
0

5

10

15

20
Hadoop

DCQCN

DCQCN+ideal

DCQCN+Floodgate

(a) Traffic reallocation: buffer occupancy on each hop switches.

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

50

100

150

Q
u
e
u
in

g
 T

im
e
 (

u
s
) Web Server

ToR-Up

Core

ToR-Down

DCQCN DCQCN+
ideal

DCQCN+
Floodgate

0

20

40

Hadoop

(b) Split up queuing time.

Figure 11: Traffic reallocation and queuing time analysis.
ToR-Up denotes ToRs’ all ports connected to their down-
stream switches, i.e., the first hop of packets. Accordingly,
ToR-Down denotes the ToRs’ all ports connected to hosts, i.e.,
the last hop of packets.
core switches is increasing until PFCs are sent back to its upstream
source ToR switch. It is the same case for source ToRs sending
back PFCs to their connected hosts. It is called PFC pause frame
storm [21]. PFC pause frame storm can spread the incast congestion
to the whole network, thus cause damage on network throughput
and FCT, which is consistent with throughput and FCT performance
demonstrated in Figure 2 and Figure 9.
Traffic reallocation and queuing time analysis. In this part,
we dig into how Floodgate reallocates in-network traffic and cor-
respondingly affects packets queuing time among different hops.
Figure 11(a) demonstrates the maximum buffer occupancy among
different hops. For DCQCN, under Hadoop workload, because of
the non-blocking topology, the buffer occupancy on ToR-Up ports,
i.e., the first hop of packets, is nearly zero. The maximum buffer
occupancy on ToR-Down ports, i.e., the last hop of packets, is the
largest among all kinds, followed by buffer occupancy on core
switches. This is because ToR-Down ports and core switches are
the aggregation point of incast traffic. Particularly, under Web
Server workload, the maximum buffer occupancy on ToR-Up ports
is also large because of the PFC frame storm. Floodgate’s send-
ing window control reallocates the in-network traffic and makes
them distributed more uniformly. The buffer pressure put on the
incast aggregation points is greatly reduced. Therefore, the buffer
occupancy on core and ToR-Down ports is reduced significantly.
Meanwhile, a relatively larger buffer occupancy on ToR-Up ports
is observed, for that incast traffic is firstly tamed by source ToRs to
avoid injecting into the downstream network aggressively. Ideal

37



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

0 1 2

Time (ms)

0

50

100

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

(a) 5% packet loss rate.

0.0 0.5 1.0 1.5 2.0

Time (ms)

0

50

100

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

(b) 10% packet loss rate.

Figure 12: Throughput when packet loss occurs.

Floodgate design leverages per-dst PAUSE mechanism to reduce the
in-network traffic, therefore the buffer occupancy on ToR-Up ports
is smaller than Floodgate.

Figure 11(b) demonstrates the per-hop average queuing time
of non-incast flows respectively. For DCQCN, under Web Server
workload, packets spend much time on ToR-Up ports because of
PFC frame storm. Under Hadoop workload, the time spent on core
switches constitutes most of the queuing time because of HOL
blocking caused by incast flows. When Floodgate is applied, the
queuing time among each hop is greatly reduced. A slightly larger
buffer occupancy on ToR-Up ports does not affect flows’ queuing
time, for that incast traffic is isolated via VOQs.

6.2 Robustness of Floodgate
Handling packet loss. To test the robustness of Floodgate when
encountering packet loss, we manufactured packet drops. Figure 12
shows the result. Under packet loss rate 5%, no obvious effect
on throughput has been observed. Under packet loss rate 10%,
throughput fluctuates within a small range. It indicates that the
sending window of Floodgate’s switch can be recovered quickly
after packet loss happens.
Three-tier topology. To explore Floodgate’s performance under
different topologies, an 8-ary fat tree topology is used. Floodgate re-
duces the average FCT and tail latency of Poisson flows signifi-
cantly, especially for Memcached, as shown in Figure 13(a). The
effectiveness of Floodgate is slightly smaller than in the two-tier
topology (§ 6.1). The main reason is that in this fat tree topology,
the number of switches is far larger while the number of hosts is
smaller than the two-tier topology. In addition, non-incast flows
whose destination belongs to the same rack with incast flows suffer
HOL blocking, for that they share the same egress port with incast
on aggregation switches. Given that number of hosts per rack is
reduced from 16 to 4, victim flows of incast become less.
When the number of ToR scales up. Figure 14 depicts the results
when the number of ToR scales up. Pure incast traffic is generated
where all hosts (except for the destination host) participate in trans-
mitting one flow to the same destination host. The flow size ranges
from 30MTU to 40MTU. For DCQCN, the buffer occupancy on ToR-
Down ports increases quickly when the number of ToRs increases,
at a rate proportional to the number of flows. When the number of
ToRs reaches 20, PFC is triggered and the buffer occupancy reaches
its maximum value. Floodgate is more robust to handle large-scale
topology. The buffer occupancy of Floodgate remains stable when
the number of ToR increases. One may wonder why the buffer
occupancy of core switches remains stable, as they can receive data
packets from more ToR when the number of ToR increases. This is
because Floodgate benefits from the delayCredit mechanism. Core

Avg 99th
0.00

0.05

0.10

F
C

T
 (

m
s
)

Memcached

Avg 99th
0.00

0.05

0.10

Hadoop

0

1

2

DCQCN

DCQCN+ideal

DCQCN+Floodgate

0

1

2

(a) Average and 99th-tail FCT of Poisson flows.

Edge-Up Agg-Up Core Agg-Down Edge-Down
0.0

2.5

5.0

7.5

10.0

M
a
x
 B

u
ff

e
r 

(M
B

)

DCQCN

DCQCN+ideal

DCQCN+Floodgate

(b) Buffer occupancy on each hop switches under Hadoop workload.
Figure 13: Performance in an 8-ary fat tree topology. Edge-
Up/Agg-Up denotes ports connected to their upstream switch;
Edge-Down/Agg-Down denotes ports connected to hosts
/their downstream switch.

20 40 60 80

#ToR

0

5

10

15

M
a
x
 B

u
ff

e
r 

(M
B

) DCQCN

20 40 60 80

#ToR

0

5

10

15
DCQCN+Floodgate

ToR-Up

Core

ToR-Down

Figure 14: When number of ToR switches scales up.

switches are delayed to send back credits when there are plenty of
packets buffered in VOQs.
6.3 Design Choice
Per-dst PAUSE is more robust to successive incast. Generally,
source ToRs are far less congested than the last hop destination ToR.
Nevertheless, we now consider an extremely corner scenario where
incast traffic is generated several times successively, i.e., each host
transmits an incast flow to one destination host and then another.
Figure 15 demonstrates the results when several successive incast
traffic for different destination hosts are generated, each time with
hundreds of flows. For DCQCN, the incast traffic quickly fills up
ToR-Down ports’ buffer, as well as core switches’ buffer. When the
incast occurs 12 times or more, the buffer occupancy on ToR-Up
ports starts to increase, which indicates that the PFC pause frame
storm happens. In Floodgate, the buffer of Core switches and ToR-
Down ports are stable because the ToR-Up ports are the first hop
gate-keepers of incast traffic. As a side-effect, the ToR-Up ports
buffer occupancy increases at a rate proportional to the number of
incast times when incast traffic arrives continuously. Nevertheless,
it is notable that Floodgate can handle dozens of times of successive
incast well. With per-dst PAUSE, the buffer occupancy is extremely
small. Source hosts are paused by source ToRs. Therefore the in-
network traffic can be reduced significantly.

There is a trade-off between deployability and robustness. Flood-
gate (per-dst PAUSE) is more robust in successive incast scenarios,
but it requires coordination of source hosts. Floodgate does not
require the help of source hosts, but it is limited to handle successive
dozens of times of incast well. Lessons we learned are that incast
can not be handled by congestion control protocols alone, therefore

38



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

10 20

#incast times

0

10

M
a
x
 B

u
ff

e
r 

(M
B

) DCQCN

10 20

#incast times

0

10

DCQCN+Floodgate

10 20

#incast times

0

10

DCQCN+Floodgate
(per-dst PAUSE)

ToR-Up

Core

ToR-Down

Figure 15: Comparison of Floodgate and Floodgate (per-dst PAUSE) when
incast occurs multiple times successively.

0 50 100 150 200

# Flow

0

100

200

300

B
u
ff

e
r 

(K
B

)

DCQCN

Kmax

Kmin

0 50 100 150 200

# Flow

0

100

200

300
DCQCN+ideal

ToR-Up

Core

ToR-Down

0 50 100 150 200

# Flow

0

100

200

300
DCQCN+Floodgate

(a) ECN-marking threshold 𝐾𝑚𝑖𝑛 = 40𝐾𝐵, 𝐾𝑚𝑎𝑥 = 160𝐾𝐵

0 50 100 150 200

# Flow

0

100

200

300

B
u
ff

e
r 

(K
B

)

DCQCN

0 50 100 150 200

# Flow

0

100

200

300
DCQCN+ideal

ToR-Up

Core

ToR-Down

Kmin, Kmax

0 50 100 150 200

# Flow

0

100

200

300
DCQCN+Floodgate

(b) ECN-marking threshold 𝐾𝑚𝑖𝑛 = 40𝐾𝐵, 𝐾𝑚𝑎𝑥 = 40𝐾𝐵

Figure 16: Realtime buffer occupancy under different ECN-marking
thresholds. The x-stick i denotes the arrival of the i-th flow.

10 20 30 40 50

T (us)

0.0

0.2

0.4

0.6

C
re

d
it

 T
h
ro

u
g
h
p
u
t

 (
G

b
p
s
)

(a) Overhead under different𝑇 .

10 20 30 40 50

T (us)

0

5

10

15

M
a
x
 B

u
ff

e
r 

(M
B

)

ToR-Up

Core

ToR-Down

(b) Buffer under different𝑇 .

10 20 30 40 50

T (us)

200

400

600

F
C

T
 (

u
s
)

Avg FCT

Tail FCT

(c) FCT under different𝑇 .

0 25 50 75 100

delayCredit (#BDP)

1.0

1.5

2.0

A
v
g
 M

a
x
 B

u
ff

e
r 

(M
B

)

ToR-Up

Core

ToR-Down

(d) DelayCredit 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡

Figure 17: Parameter selection of credit timer 𝑇
and delayCredit threshold 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 .

0 1000 2000

Time (us)

0

100

200

300

400

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

data

ctrl

credit

(a) Ideal

0 1000 2000

Time (us)

0

100

200

300

400

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

data

ctrl

credit

(b) Floodgate

Figure 18: Stacking diagram of real time band-
width occupation of data packets, credit packets
and control packets (i.e., ACKs or CNP).

we propose Floodgate. Furthermore, the fact is that to address incast
problem, it is not only the responsibility of in-network switches
nor end-point hosts, but it requires the co-design of both switches
and hosts.
6.4 Compatible with CC
To dig into the convergence of Floodgatewith different ECN-marking
threshold settings, we conduct simulations where flows transmit-
ting to the same receiver arrive periodically. The average interval
between two consecutive flows is 7.7ms, which is long enough for
convergence of congestion control. The buffer occupancy variation
is shown in Figure 16. Two observations are found. First, the buffer
occupancy of Floodgate (ideal) is insensitive to the ECN-marking
threshold. Second, the buffer occupancy of DCQCN can not con-
verge when flows continue arriving. For DCQCN, the buffer occu-
pancy of ToR-Down has an inflection point, i.e., the y-axis is 𝐾𝑚𝑎𝑥 ,
and the corresponding x-axis is𝑚𝑎𝑥{𝐵𝑊ℎ𝑜𝑠𝑡/𝑅𝑎𝑡𝑒𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥/𝑀𝑇𝑈 }.
After that, because there is at least one in-flight packet for a flow, the
buffer continues increasing along with the number of flows. While
for Floodgate, the buffer occupancy of ToR-Down can converge to
proportional to the initial sending window and topology scale.

6.5 Parameter Selection
In this section, Floodgate’s performance under different parameter
selections is evaluated. Figure 17 depicts the results.
Credit Timer𝑇 . Figure 17(a), (b) and (c) shows variation of network
overhead, buffer occupancy, and FCT across different values of 𝑇 .
A larger 𝑇 makes it less costly for switches to generate credit, and
weakens the role Floodgate plays in reducing buffer occupancy, and
vice versa. As shown in Figure 17(a), the network throughput used
by credit packets decreases when 𝑇 increases. To avoid bandwidth

waste, the per-dst sending window is initialized to be proportional
to 𝑇 . The maximum buffer occupancy of ToR-Up ports decreases
when 𝑇 increases, as shown in Figure 17(b). For that source ToR
can transmit more incast traffic to its downstream switches when
the sending window increases. The traffic aggregation points, i.e.,
core and ToR-Down ports, absorb data at a higher rate when 𝑇
increases, resulting in a larger buffer occupancy. In addition, a
larger 𝑇 prolongs the average FCT and tail latency for that it
controls the incast traffic less efficiently. There is a trade-off between
performance and network overhead. In practice, 𝑇 is set to 10𝜇s.
DelayCredit 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 . Figure 17(d) shows the buffer occupancy
variation with different 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 values. 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 determines
how conservatively credits are sent back. When 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 ranges
from 1 to 38, Floodgate achieves the lowest buffer occupancy on
core switches. At the same time, buffer occupancy on ToR-Up ports
and ToR-Down ports remains almost unchanged. It indicates that
Floodgate is robust with different values of 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 . delayCredit
mechanism is much more useful in extreme scenarios where the
number of ToR scales up (§ 6.2), because it helps to control the
buffer occupancy on core switches. Generally, 𝑡ℎ𝑟𝑒𝑐𝑟𝑒𝑑𝑖𝑡 is set to
10 BDP.

7 HARDWARE FEASIBILITY
In this section, we dig into the hardware feasibility of Flood-

gate. We discuss the hardware requirements of Floodgate on both
NICs (§ 7.1) and switches. A Floodgate pipeline in P4-based pro-
grammable switch ASIC is shown in Figure 19, consisting of ingress
pipeline, traffic manager (TM) and egress pipeline, respectively
(§ 7.2). For functions (i.e., VOQ schedulers) that can not be supported
by today’s switch architecture, we give our envision on how to

39



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Fo
rw

ar
d

in
g

T
ab

le

Ingress Pipeline

W
in

d
o

w
s

U
p

d
at

e

V
O

Q
Se

le
ct

io
n

Egress PipelinePktGen

Em
it

ti
n

g
C

o
u

n
te

r

C
re

d
it

M
o

d
if

ic
at

io
n

P
ar

se
r

Fl
o

o
d

ga
te

Sc
h

ed
u

le
r

Traffic Manager

D
ep

a
rs

er

Packets &Credits

Credit
Template

P

P
ar

se
r

D
ep

a
rs

er

VOQs

Drop Credits

Bitmap

Recirculated

Window

VUPa
Recirculated

VUPb

Strictly
Prioritized

RR

Figure 19: Pipeline of Floodgate switch.

implement it in future programmable switches (§ 7.3). At last, we
analysis the memory and network overhead of Floodgate (§ 7.4).
7.1 Requirements on NICs

There are two versions of Floodgate, i.e., ideal (§ 3.2) and practical
design (§ 4). Floodgate does not require specific modifications
on host NICs. Floodgate (ideal) leverages 𝑑𝑠𝑡𝑃𝑎𝑢𝑠𝑒 mechanism to
achieve better performance (§ 4.3). It requests per-dst queues on
hosts, which can be implemented by leveraging programmable
smart NICs in RDMA networks [37]. It can also be supported in
Ethernet networks, where per-dst queues can be implemented by
modifying the QDisc kernel space [35].

7.2 Floodgate Pipeline
Ingress pipeline. The ingress pipeline is responsible for maintaining
the global per-dst sending window, packet forwarding, and VOQ
selection. When a packet arrives at the ingress, the parser parses the
packet header. The window update module is leveraged to update
the per-dst sending window. If a credit packet is received, increasing
the corresponding sending window. And Floodgate replies on recir-
culated packets, called VOQ status updating packets (VUP), carrying
back the number of packets dequeued from VOQs to increase the
sending window. If the sending window is inadequate to forward a
data packet (or the corresponding destination is already allocated
with a VOQ), the metadata of the data packet is tagged with 𝑛𝑜_𝑤𝑖𝑛.
The forwarding table is used to calculate the egress port according
to IP tuples in packets’ header. Data packets without 𝑛𝑜_𝑤𝑖𝑛 tag are
directly pushed into a default VOQ queue. VOQ selection module
assigns data packets tagged with 𝑛𝑜_𝑤𝑖𝑛 to the left VOQs. If a data
packet whose destination is already allocated with a VOQ, assigns
it to the corresponding VOQ directly. Otherwise, it is allocated
with an empty VOQ if possible, according to the VOQ bitmap. A
bitmap of VOQs maintains the status of VOQ usage. In Tofino, only
the egress pipeline can get the queuing status directly. Hence, to
update the VOQ bitmap, VUP is leveraged to get the VOQ status.
In addition, Tofino2 has already supported that the ingress pipeline
stage subscribes to the status of specified queues [28].
Traffic Manager (TM). TM contains the logic to manage packet
buffer and schedule egress queues/VOQs. When a data packet tagged
with 𝑛𝑜_𝑤𝑖𝑛 arrives at the TM, it is pushed into the assigned
VOQ. To update the bitmap in the ingress pipeline, VUP packets
check the VOQ status and carry the information back recirculately.
Floodgate switch maintains VOQ schedulers for each port. The
queue reserved for non-incast traffic (i.e., packets without the
𝑛𝑜_𝑤𝑖𝑛 tag) is strictly prioritized over the left VOQs, enabling
non-incast traffic to be transmitted as soon as possible. And the

scheduler inquiries the left VOQs based on a Round-Robin manner.
Only VOQs with adequate sending windows can transmit data
packets (see more details in § 7.3).
Egress pipeline. The egress pipeline is responsible for constructing
the credit packets, filling them with the number of credits. Instead
of leveraging explicit timers, credit packets are generated by the
internal packet generator periodically, according to the preset in-
terval. Tofino supports internal packet generator to inject 100 Gbps
traffic into one Ethernet port [51]. Hence, we set the credit packets
generation interval to a small value (i.e.,1𝜇s). When a credit is
generated, it is forwarded to an egress pipeline. The emitting
counter table maintains the credits needed to be returned for each
destination, i.e., the number of packets dequeued from VOQs, and
the timestamp recording the last sent time of credit packets. When a
data packet is dequeued from the VOQ, the corresponding emitting
counter is increased by one. When a credit packet arrives at the
egress pipeline, checking the timestamp. If the passed time reaches
a threshold 𝑇 (i.e., 10𝜇s) and the emitting counter is not zero, the
credit modification module modifies its credit field according to
the emitting counter and resets it to zero. And the timestamp is
updated. Otherwise, the credit packet is dropped. When a VUP
arrives, it carries back the corresponding emitting counter back to
the ingress pipeline to update the sending window.

7.3 Required Features for Future Architecture
To implement Floodgate, a scheduler should be applied to sched-

ule the transmission of packets in VOQs according to the left
sending window. Only packets whose destination has adequate
sending windows can be forwarded.

However, to our knowledge, packet schedulers in current pro-
grammable switches can only support relatively simple scheduling
algorithms, e.g., Deficit Weighted Round-Robin (DWRR) [46]. The
good news is that the programmable ability of the scheduler has
raised great attention and has been investigated [48]. According to
the discussions in [45], implementing a programmable scheduler
with pausing features is relatively reasonable and straightforward.
Because doing so does not change the order of temporal or spatial
complexity of existing TM implementations. Moreover, PFC already
requires a similar queue pausing/resuming capability triggered by
specific protocol messages in the data plane.

In future programmable hardware, Floodgate’s transmission
scheduler can be implemented in the following way. When a packet
is received, if the remaining window is not enough, a 𝑛𝑜_𝑤𝑖𝑛 flag is
set in the packet’s metadata, then the traffic manager will pause the
transmission of the corresponding VOQ. VUP is used to notify the
traffic manager when sending window is inadequate in case there

40



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

are no following data packets. And when a credit is received, the
traffic manager resumes the corresponding VOQ. We are currently
in cooperation with a leading switch vendor to add this feature in
its next-generation switch.

7.4 Resource Overhead
Memory overhead. The memory overhead comes from the run-
time status that Floodgate should maintain. Floodgate’s switch
needs to maintain sending windows for active destination (desti-
nation with full window size can be cleared periodically). In the
worst case, the maximum number of sending windows scales with
the number of hosts in the network. For a datacenter network
consisting of 100,000 servers, entries of sending window equal
100,000 in the worst case, which consumes less than 10% of the
switch’s dedicated stateful memory according to discussions in BFC
(Section 3.3.1) [19]. Besides, given that incast traffic is isolated from
non-incast traffic, small non-incast flows can be finished quickly.
Therefore, the number of active destinations can be modest. In
addition, destination IPs can be hashed into hash tables to store the
value of sending windows, saving memory at the cost of sacrificing
precision.
Network overhead. To evaluate Floodgate’s network overhead,
real-time bandwidth occupation is monitored on switches’ egress
ports. The bandwidth occupation of three different kinds of packets
is shown in Figure 18. Control packets, i.e., ACKs or CNP sent by
receiver hosts, saturate 4.5% of bandwidth in both approaches, the
same as in DCQCN. For Floodgate, credit packets saturate 0.175%
of bandwidth, and that value is 3.0% in ideal design. It suggests that
the network overhead induced by Floodgate is negligible.

8 DISCUSSION
Compatible with different congestion control. In Floodgate,
data packets recognized as incast could be pushed into VOQs. For
congestion control protocols leveraging ECN or egress queue length
as the congestion signals, i.e., DCTCP/DCQCN/HPCC, Floodgate’s
switch should maintain a counter to perform the same function.
When a packet arrives at the ingress port, it increases the counter
after determining the forwarding egress port. And when a packet
is forwarded to the next hop, the counter is decreased by one. In
Floodgate, buffer occupancy on ToR could be larger than before.
HPCC is sensitive to queue length, hence, the flow rate of non-
incast flows could be reduced aggressively. Therefore, to cooperate
with HPCC, the queue length carried in non-incast packets is set to
the egress queue length, while the queue length carried in incast
packets (i.e., packets queuing at VOQs) is set to the sum of VOQs.
Compared with BFC. BFC is a congestion control architecture
that leverages per-hop per-flow flow control, aiming at improving
both latency for short flows and throughput for long flows. BFC
acts based on a pause/resume manner, at a per-queue granularity.
BFC assigns flows to a limited number of queues, i.e., 32/128 per
port in Tofino2. When a packet arrives, check the corresponding
egress queue length. Once it just exceeds a given threshold, a pause
frame is sent to the upstream port to pause the transmission of the
corresponding queue. And the upstream queue is resumed once all
its packets that exceeded the pause threshold have been transmitted.
BFC has already been implemented on Tofino2, a state-of-the-art
P4-based programmable switch ASIC.

10 2 10 1 100

FCT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Memcached

HPCC
HPCC+Floodgate
BFC-32Q
BFC-128Q
BFC-ideal

10 2 10 1 100

FCT (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Web Server

Figure 20: Compared with BFC under incastmix scenarios.
BFC can not avoid HOL blocking caused by incast flows totally.

Figure 20 compares the performance of BFC and Floodgate. We
evaluate three versions of BFC. BFC-ideal uses infinite queues,
meanwhile, each flow is allocated with a dedicated queue, and
flow identifier (FID) is assigned to flow-id (i.e., no hash collision
occurs). For BFC-32Q/128Q, different flows could share the same
queue. It is obvious that when queues are used up, non-incast flows
could share the same queue with incast flows. Moreover, we find
that even when queues are adequate, non-incast flows and incast
flows could also share the same queue (see Appendix B for details).
Due to the fact that the pausing mechanism of BFC works on a
per-queue granularity, unrelated flows sharing the same upstream
queue will get paused even though they are not going through the
congested port (i.e., congestion spreading occurs). HOL blocking
could happen, especially when non-incast flows share the same
queue with incast flows. This is the reason why BFC-32Q/128Q
performs poorer than Floodgate. BFC-ideal performs better than
Floodgate under Memcached, in that INT used by HPCC wastes
bandwidth.While underWeb server, Floodgate performs better than
BFC-ideal. Because Floodgate recognizes incast flows and tames
the transmission of incast flows quickly, thus avoiding bandwidth
waste at the last-hop.
Additional comparison. We compare Floodgate with NDP, and a
derive of Floodgate named PFC w/ tag in Appendix B to dig into
more characteristics of Floodgate.
9 CONCLUSION
This paper analyzes the consequence of incast, and proposes Flood-
gate, a switch-based hop-by-hop flow control, which handles in-
cast by following steps: (i) recognize incast flows quickly and
accurately; (ii) tame the transmission of incast flows; (iii) isolate
incast flows from non-incast flows. Floodgate reduces the buffer
occupancy significantly, thus reducing packet loss/PFC. Therefore,
the performance of non-incast flows is greatly improved while
the performance of incast flows is not compromised. With the
rapid growth of switches’ programmability, co-design of congestion
control with switch-based hop-by-hop flow control is promising.
ACKNOWLEDGMENTS
We thank our shepherd Mina Tahmasbi Arashloo and the anony-
mous CoNEXT reviewers for their valuable feedback. This research
is supported by the Key-Area Research and Development Program
of Guangdong Province 2020B0101390001, the National Natural
Science Foundation of China under Grant Numbers 61772265 and
62072228, the Fundamental Research Funds for the Central Uni-
versities, the Collaborative Innovation Center of Novel Software
Technology and Industrialization, and the Jiangsu Innovation and
Entrepreneurship (Shuangchuang) Program.

41



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] 2006. Apache Hadoop. http://hadoop.apache.org. (2006).
[2] 2010. Apache Spark. http://spark.apache.org/. (2010).
[3] Alibaba. 2019. HPCC simulator. https://github.com/alibaba-edu/High-Precision

-Congestion-Control. (2019).
[4] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data
center TCP (DCTCP). In ACM SIGCOMM.

[5] Infiniband Trade Association. 2014. Supplement to InfiniBand architecture
specification volume 1 release 1.2.2 annex A17: RoCEv2 (IP routable RoCE).
(2014).

[6] Wei Bai, Kai Chen, Haitao Wu, Wuwei Lan, and Yangming Zhao. 2014. PAC:
Taming TCP Incast Congestion Using Proactive ACK Control. In 2014 IEEE 22nd
International Conference on Network Protocols.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-Band
Network Telemetry. In ACM SIGCOMM.

[8] Berkeley. 2018. Berkeley Extensible Software Switch. https://github.com/NetSy
s/bess. (2018).

[9] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. SIGCOMM .

[10] Broadcom. 2021. BCM88800 Traffic Management Architecture. https://docs.bro
adcom.com/doc/88800-DG1-PUB. (2021).

[11] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled delay-bounded
congestion control for datacenters. In ACM SIGCOMM.

[12] Cisco. 2010. Cisco Nexus 5548P Switch Architecture. https:
//www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-swi
tch/white_paper_c11-622479.html. (2010).

[13] Austin Donnelly, Greg O’Shea, Ant Rowstron, and Paolo Costa. 2012. Camdoop:
Exploiting In-network Aggregation for Big Data Applications. In NSDI.

[14] Linux Foundation. 2015. Data Plane Development Kit (DPDK). http://www.dp
dk.org. (2015).

[15] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network
requirements for resource disaggregation. In USENIX OSDI.

[16] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. pHost: Distributed near-optimal datacenter transport
over commodity network fabric. In ACM CoNEXT.

[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yao hui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng Cao, Chen Tian, Jinbo
Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu. 2021. When Cloud
Storage Meets RDMA. In NSDI.

[18] Yixiao Gao, Yuchen Yang, Chen Tian, Jiaqi Zheng, Bing Mao, and Guihai Chen.
2018. DCQCN+: Taming Large-Scale Incast Congestion in RDMA over Ethernet
Networks. 2018 IEEE 26th International Conference on Network Protocols (ICNP)
(2018), 110–120.

[19] Prateesh Goyal, Preey Shah, Naveen Kr. Sharma, Mohammad Alizadeh, and
Thomas E. Anderson. 2022. Backpressure Flow Control. In NSDI.

[20] The P4.org Architecture Working Group. 2021. P416 Portable Switch Architecture
(PSA). https://p4lang.github.io/p4-spec/docs/PSA.pdf. (2021).

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over commodity Ethernet at scale. In ACM
SIGCOMM.

[22] Y. Guo. 2001. Hydrologic Design of Urban Flood Control Detention Ponds. Journal
of Hydrologic Engineering 6 (2001), 472–479.

[23] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In ACM SIGCOMM.

[24] Shuihai Hu, Wei Bai, Baochen Qiao, Kai Chen, and Kun Tan. 2018. Augmenting
Proactive Congestion Control with Aeolus. In Proceedings of the 2nd Asia-Pacific
Workshop on Networking. ACM, 22–28.

[25] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,
Kun Tan, and Yi Wang. 2020. Aeolus: A Building Block for Proactive Transport
in Datacenters. In ACM SIGCOMM. ACM.

[26] Huawei. 2021. CloudEngine 12800 Series Data Center Core Switches. https:
//docs.broadcom.com/doc/88800-DG1-PUB. (2021).

[27] IEEE. 2011. 802.11Qbb. Priority based flow control. https://1.ieee802.org/dcb/
802-1qbb/. (2011).

[28] Intel. 2020. Intel Tofino2 – A 12.9Tbps P4-Programmable Ethernet Switch.
https://ieeexplore.ieee.org/document/9220636. (2020).

[29] Juniper. 2017. Understanding CoS Virtual Output Queues (VOQs) on QFX10000
Switches. https://www.juniper.net/documentation/en_US/junos/topics/concept
/cos-qfx-series-voq-understanding.html. (2017).

[30] M. Karol, S. J. Golestani, and D. Lee. 2003. Prevention of deadlocks and livelocks
in lossless backpressured packet networks. IEEE/ACM Transactions on Networking

(2003).
[31] Gautam Kumar, Nandita Dukkipati, Keon Jang, HassanWassel, XianWu, Behnam

Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan,
David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple and Effective
for Congestion Control in the Datacenter. In ACM SIGCOMM.

[32] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In ACM SIGCOMM.

[33] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021.
Towards Timeout-Less Transport in Commodity Datacenter Networks. In
Proceedings of the Sixteenth European Conference on Computer Systems.

[34] Kexin Liu, Guihai Chen, Wanchun Dou, Yanan Jiang, Huaping Zhou, Jingjie Jiang,
Fan Zhang, Gong Zhang, Bingchuan Tian, Chen Tian, Bo Li, Qingyue Wang, Jiaqi
Zheng, Jiajun Sun, Yixiao Gao, and Wei Wang. 2020. Exploring Token-Oriented
In-Network Prioritization in Datacenter Networks. IEEE Transactions on Parallel
and Distributed Systems (2020).

[35] Shiyu Liu, Ahmad Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum, and
Anirudh Sivaraman. 2021. Breaking the Transience-Equilibrium Nexus: A New
Approach to Datacenter Packet Transport. In NSDI.

[36] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-Tolerant Engineered Network. In NSDI 13. USENIX
Association.

[37] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In-Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: enabling multi-tenant storage
disaggregation on SmartNIC JBOFs. Proceedings of the 2021 ACM SIGCOMM 2021
Conference (2021).

[38] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY:
RTT-based congestion control for the datacenter. In ACM SIGCOMM.

[39] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A receiver-driven low-latency transport protocol using network priorities.
In ACM SIGCOMM.

[40] David Nagle, Denis Serenyi, and Abbie Matthews. 2004. The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage. In Supercomputing.
ACM.

[41] NASA NJU. 2021. Floodgate simulator. https://github.com/NASA-NJU/Floodga
te-NS3. (2021).

[42] W. W. Peterson and D. T. Brown. 1961. Cyclic Codes for Error Detection.
Proceedings of the IRE (1961).

[43] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the
2014 ACM conference on SIGCOMM.

[44] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. Legoos: A
disseminated, distributed OS for hardware resource disaggregation. In USENIX
OSDI.

[45] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G. Kannan, Changhoon
Kim, A. Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable Calendar
Queues for High-speed Packet Scheduling. In NSDI.

[46] M. Shreedhar and G. Varghese. 1996. Efficient fair queueing using deficit round-
robin. IEEE/ACM Trans. Netw. 4 (1996), 375–385.

[47] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,
Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A network
architecture for disaggregated racks. In USENIX NSDI.

[48] Anirudh Sivaraman, Suvinay Subramanian, Anurag Agrawal, S. Chole, Shang-
Tse Chuang, T. Edsall, M. Alizadeh, S. Katti, N. McKeown, and H. Balakrishnan.
2015. Towards Programmable Packet Scheduling. Proceedings of the 14th ACM
Workshop on Hot Topics in Networks (2015).

[49] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In USENIX
OSDI. ACM.

[50] Wikipedia. 2020. Floodgate. https://wikipedia.org/wiki/Floodgate. (2020).
[51] Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui Wang, and Haiyong Wang.

2019. Accelerated Service Chaining on a Single Switch ASIC. Proceedings of the
18th ACM Workshop on Hot Topics in Networks (2019).

[52] HaitaoWu, Z. Feng, C. Guo, and Y. Zhang. 2013. ICTCP: incast congestion control
for TCP in data-center networks. IEEE/ACM Trans. Netw. 21 (2013), 345–358.

[53] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong, and
Yongguang Zhang. 2012. Tuning ECN for data center networks. In ACM CoNEXT.

[54] Jiao Zhang, Fengyuan Ren, Li Tang, and Chuang Lin. 2013. Taming TCP incast
throughput collapse in data center networks. In 2013 21st IEEE International
Conference on Network Protocols (ICNP).

[55] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
ACM SIGCOMM.

42

http://hadoop.apache.org
http://spark.apache.org/
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://docs.broadcom.com/doc/88800-DG1-PUB
https://docs.broadcom.com/doc/88800-DG1-PUB
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
http://www.dpdk.org
http://www.dpdk.org
https://p4lang.github.io/p4-spec/docs/PSA.pdf
https://docs.broadcom.com/doc/88800-DG1-PUB
https://docs.broadcom.com/doc/88800-DG1-PUB
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://ieeexplore.ieee.org/document/9220636
https://ieeexplore.ieee.org/document/9220636
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-qfx-series-voq-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-qfx-series-voq-understanding.html
https://github.com/NASA-NJU/Floodgate-NS3
https://github.com/NASA-NJU/Floodgate-NS3
https://wikipedia.org/wiki/Floodgate


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Liu et al.

APPENDIX

A SUPPLEMENTAL RESULTS
A.1 Incast Flows’s Performance Under

Incastmix Scenarios

Avg 99th
0

1

2

F
C

T
 (

m
s
)

Memcached

Avg 99th
0

1

2

Web Server

Avg 99th
0

1

2

F
C

T
 (

m
s
)

Hadoop

Avg 99th
0

1

2

Web Search

0

1

2
DCQCN

DCQCN+ideal

DCQCN+Floodgate

0

1

2

3

0

1

2

3

0

1

2

3

Figure 21: FCT of incast flows under incastmix scenarios.

Figure 21 corresponds to the simulation described in § 6.1. Flood-
gate does not downgrade the performance of incast flows, which
indicates that the bandwidth of incast flows is utilized. Furthermore,
a little improvement is observed. This is because Floodgate tames
the transmission of incast flows, avoiding a large queuing delay at
the last hop. For ideal design, the incast FCT is slightly increased.
For that it is strict for incast flows, and gives Poisson flows a more
significant improvement than Floodgate (as shown in Figure 8).

A.2 Pure Poisson Scenarios

Avg 99th
0

2

4

6

F
C

T
 (

u
s
)

Memcached

Avg 99th
0

20

40

60

Web Server

Avg 99th
0.00

0.02

0.04

0.06

F
C

T
 (

m
s
)

Hadoop

Avg 99th
0.0

0.5

1.0

Web Search

0

2

4

6

8

DCQCN

DCQCN+ideal

DCQCN+Floodgate

0

200

400

600

0.0

0.5

1.0

0

5

10

15

Figure 22: FCT under poisson scenarios.

Figure 22 shows the performance under pure Poisson arrival flow
scenarios. For DCQCN+Floodgate, no non-incast flows are wrongly
recognized as incast, and the overhead of Floodgate is negligible.
Therefore the performance of DCQCN+Floodgate is almost the
same as DCQCN. The performance of DCQCN+ideal is slightly
worse than DCQCN because of the overhead of credit (§ 7.4).

B ADDITIONAL DISCUSSIONS
Compared with NDP. Figure 23 shows the performance of NDP,
DCQCN and DCQCN + Floodgate. MTU is set to 1.5 KB. For non-
incast flows, benefiting from a relatively small buffer occupancy,
NDP performs better than DCQCN. However, when compared with
DCQCN + Floodgate, a significant FCT performance downgrade is

Avg 99th
0.0

0.1

0.2

0.3

F
C

T
 (

m
s
)

0

1

2

DCQCN

DCQCN+Floodgate

NDP

(a) Non-incast flows under Memcached.

Avg 99th
0.0

0.2

0.4

F
C

T
 (

m
s
)

0

1

2

(b) Non-incast flows under WebServer.

Avg 99th
0

1

2

3

F
C

T
 (

m
s
)

0

2

4

(c) Incast flows under Memcached.

Avg 99th
0

1

2

3

F
C

T
 (

m
s
)

0

1

2

3

(d) Incast flows under WebServer.

Figure 23: Compared with NDP under incastmix scenarios.

Avg 99th
0.0

0.2

0.4

F
C

T
 (

m
s
)

0

1

2

(a) Under non-blocking topology.

Avg 99th
0

1

2

F
C

T
 (

m
s
)

0

2

4

6

DCQCN

DCQCN+Floodgate

DCQCN+PFC w/ tag

(b) Under oversubscribed topology (4:1
oversubscription ratio).

Figure 24: Compared with PFC w/ tag.

observed. For that NDP does not identify incast flows from non-
incast flows, letting all flows suffer from packet trimming and
retransmission. When incast flows already have depleted the queue
length to the cut-payload threshold, following non-incast flows can
also encounter packet trimming. It costs data packets at least one
RTT for retransmission. The performance of non-incast flows could
get downgraded. In addition, NDP prolongs the FCT performance of
incast flows, as shown in Figure 23(c) and (d). This is because packet
headers (CP) uses much bandwidth, i.e., 30.5% and 28% of bottleneck
bandwidth is used under Memcached and WebServer workloads,
respectively. Hence, the network goodput is downgraded.
BFC can not mitigate HOL blocking. By digging into the simu-
lation results of BFC, we observed that non-incast flows and incast
flows could share the same queue when queues are adequate. There
are briefly three reasons.
• (i) When an incast flow is dequeued, the queue it used could be
newly assigned to the following non-incast flows. Since a switch
does not know the current queue assignment of a flow at the
upstream, it uses the 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑄 conveyed by the incast flow to
pause a queue. Innocent non-incast flows could be paused only
because they use the same queue that incast flows used before.

• (ii) To control the transmission of incast flows more efficiently,
BFC leverages sticky queue assignment. A sticky queue denotes
that a flow is always assigned to the same queue for a period of
time (i.e., sticky threshold).When incast flows arrive periodically,
the following incast flows can be paused before forwarding to
the downstream switch. However, it has a side-effect: when the
sticky queue used by incast flows is empty, non-incast flows
could be pushed into it. Therefore, following incast flow could
share the same queue with non-incast flows.

43



Floodgate. CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

• (iii) Hash functions are used to keep track of the queue assign-
ment. Hash collision could occur. We observed that at most eight
flow IDs could be hashed into the same FIDs simultaneously.

PFC w/ tag discussion. A derive of Floodgate , i.e., called PFC w/
tag, acts as below. When the egress queue length of the last-hop
ToR switch exceeds a threshold, a pause frame tagged with the
destination experiencing incast is sent to the upstream switch. PFC
w/ tag is different from PFC in that it states what destination to
pause rather than the entire traffic between two switches, and it
works on the egress queue. When the upstream switch receives a
pause frame, upcoming packets whose destination is paused are
pushed into a dedicated VOQ. Likewise, if the VOQ queue length of
the switch exceeds the PFC threshold, pause frames can be sent to
its upstream further. In addition, to avoid unnecessary transmission
of resume frames, the switch should record the paused upstream
entities for each destination.

PFC w/ tag and Floodgate both detect per-dst incast, but they
act in a different way. PFC w/ tag detects incast and then generates
pause frames according to the length of the egress queue instead
of keeping track of the in-flight packets as Floodgate does. PFC
w/ tag is a reactive flow control while Floodgate is a proactive
flow control. Figure 24 compares the performance of PFC w/ tag
and Floodgate. The performance of Floodgate is comparable with
PFC w/ tag in non-blocking topology. In addition, the number of
VOQs used by PFC w/ tag is larger than Floodgate by an order of
magnitude, indicating that PFC w/ tag does not recognize incast
flows accurately. For that PFC w/ tag has a longer control loop;
a smaller threshold should be set to detect incast quickly. Under
blocking topology, Floodgate achieves better performance than PFC
w/ tag. Since that for PFC w/ tag, when the first-hop ToR switch
becomes the congested point, the last-hop detection of incast is not
timely enough, i.e., only when incast traffic arrives at the last-hop
ToR switch will a pause frame start to be transmitted. Non-incast
flows can already have experienced HOL blocking by incast flows
before PFC w/ tag taking effects. While for Floodgate, incast can be
detected at the first-hop switch. Likewise, along with the number
of ToR switches increasing, the incast on core switches scales up,
which could downgrade the performance of PFC w/ tag.

44


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Incast is not Uncommon
	2.2 Incast Hurts Performance
	2.3 Congestion Control Alone is not Effective
	2.4 Intuition

	3 Floodgate Overview
	3.1 Basic Idea
	3.2 A Strawman Design
	3.3 Practical Challenges

	4 Floodgate design
	4.1 Downstream Switch Algorithm
	4.2 Upstream Switch Algorithm
	4.3 Miscellaneous Detailed Designs

	5 Testbed Experiments
	5.1 Implementation
	5.2 Testbed Evaluation

	6 Simulation Evaluation
	6.1 Simulations Under Incastmix Scenarios
	6.2 Robustness of Floodgate
	6.3 Design Choice
	6.4 Compatible with CC
	6.5 Parameter Selection

	7 Hardware Feasibility
	7.1 Requirements on NICs
	7.2 Floodgate Pipeline
	7.3 Required Features for Future Architecture
	7.4 Resource Overhead

	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Supplemental Results
	A.1 Incast Flows's Performance Under Incastmix Scenarios
	A.2 Pure Poisson Scenarios

	B Additional Discussions

