
µMon: Empowering Microsecond-level Network
Monitoring with Wavelets

Hao Zheng, Chengyuan Huang, Xiangyu Han, Jiaqi Zheng, Xiaoliang Wang,
Chen Tian, Wanchun Dou, Guihai Chen

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing, China

ABSTRACT

Network monitoring is essential for network management and op-
timization. In modern data centers, fluctuations in flow rates and
network congestion events (e.g., microbursts) typically manifest
on a microsecond timescale. However, the time granularity of net-
work monitoring systems has not been refined correspondingly
to efficiently capture these behaviors. Attaining the monitoring
granularity at the microsecond scale can greatly facilitate network
performance analysis and management, but poses considerable
challenges regarding memory, bandwidth, and deployment costs.
We propose µMon, a novel microsecond-level network monitoring
system for data centers. The key of µMon is WaveSketch, an inno-
vative algorithm that measures and compresses flow rate curves
using in-dataplane wavelet transform. WaveSketch allows for more
accurate characterization of application traffic patterns and aids in
profiling transport algorithms. Furthermore, by combining the fine-
grained flow rate measurements with network-collected congestion
information, µMon can ‘replay’ congestion events to analyze their
cause and impact. We evaluate µMon through testbed deployment
and simulations at a granularity of 8.192 µs. The evaluation results
demonstrate that µMon can achieve a 90% accuracy in microsecond-
level rate measurements with an average of 5 Mbps bandwidth over-
head per host. Additionally, it can capture 99% heavy congestion
events with 31-82 Mbps bandwidth overhead per switch.

CCS CONCEPTS

• Networks→ Data center networks; Network monitoring.

KEYWORDS

Network Monitoring, Sketching Algorithms

ACM Reference Format:

Hao Zheng, Chengyuan Huang, Xiangyu Han, Jiaqi Zheng, Xiaoliang Wang,
Chen Tian, Wanchun Dou and Guihai Chen. 2024. µMon: Empowering
Microsecond-level Network Monitoring with Wavelets. In ACM SIGCOMM
2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3651890.
3672236

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672236

1 INTRODUCTION

Network monitoring is essential for network management and
optimization. In general, a network monitoring system serves two
primary purposes. For one thing, it measures application traffic,
providing insights into flow size distribution and flow behaviors
such as average rate and rate variations. For another, it monitors
network events, including the detection and analysis of congestions
caused by microbursts [68], load imbalances [7], incast [34], among
others.

In modern data centers, fluctuations in flow rates and network
congestion events (e.g., microbursts) typically manifest on a mi-
crosecond timescale. This is attributed to the deployment of ultra-
low latency forwarding devices and network stacks that utilize
technologies like kernel bypass (e.g., user-space TCP [28, 36, 74])
and hardware offloading (e.g., TOE [50], RDMA [21]). Regarding
the flow behaviors, low latency in data centers enables congestion
signals (e.g., congestion notification packets (CNP)) to reach senders
more quickly and significantly adjusts flow rates at the microsec-
ond scale. Capturing these fine-grained rate variations is valuable
for understanding network performance and debugging transport
algorithms. As for the network events, flows can be generated at
the microsecond scale with a high initial rate [75], converging on
specific links and increasing the likelihood of microbursts. Detect-
ing and analyzing these transient congestions is essential because
they can significantly increase network latency and cause jitters in
application performance [29].

However, the time granularity of network monitoring systems
has not been refined correspondingly to efficiently capture the fine-
grained network behaviors. Traditional monitoring systems (e.g.,
Netflow [14], SNMP [16]) operate at the granularity of seconds to
minutes. They can only obtain the average flow rate and struggle to
capture the microsecond-level flow rate variations. Moreover, the
coarse-grained monitoring is prone to missing transient congestion
events in the network. Existing schemes [24, 26, 39, 53, 63, 71] on
flow-level measurement achieve millisecond granularity, which is
still three orders ofmagnitude coarser than the timescale of data cen-
ter dynamics. Recently, some monitoring tools with microsecond-
level precision have emerged. However, these tools generally con-
centrate on interface-level statistics [20] or detailed analysis of host
stack performance [49, 66]. At present, few systems attempt to
efficiently monitor fine-grained flow behaviors at scale.

Attaining microsecond-level monitoring in data centers poses
significant challenges regarding memory, bandwidth, and deploy-
ment costs. As for microsecond-level flow rate measurements, a
straw-man solution is to assign existing measurement schemes to
each finer-grained time window directly. Specifically, if we refine
the time granularity from 10 ms to 10 µs, the solution requires 1,000

https://doi.org/10.1145/3651890.3672236
https://doi.org/10.1145/3651890.3672236
https://doi.org/10.1145/3651890.3672236

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

times more counters in the worst case, resulting in an unacceptable
bandwidth overhead. Regarding microsecond-level congestion de-
tection, recent efforts [29, 54, 73] rely on programmable switches to
obtain queue information directly in the data plane. Nevertheless,
capturing congestion events on commodity switches also deserves
investigation, as many data centers still use fixed-function switches.

We propose µMon, a novel microsecond-level network monitor-
ing system for data centers. Our key idea is to develop a memory-
efficient scheme for measuring microsecond-level flow rates. In this
way, we can observe the microscopic characteristics of application
flows. Furthermore, by combining the fine-grained flow rate mea-
surements with network-collected congestion information, µMon
can ‘replay’ congestion events to analyze their cause and impact.
Our contributions can be summarized as follows:

First, we introduce WaveSketch, a novel measurement algorithm
designed to accurately measure flow rates at the microsecond level.
WaveSketch abstracts flow rate curves as waveforms and then com-
presses them using wavelet transform theory [67]. By leveraging
the capability of wavelet transform for multi-resolution analysis,
WaveSketch captures the most significant features of flow rate
curves while discarding minor components, thus achieving a good
balance between compression ratio and measurement accuracy. To
integrate the wavelet transform into network measurement, we
make targeted designs in the mother wavelet, coefficient selection,
and streaming updates. We demonstrate that WaveSketch has a
computational complexity of 𝑂 (1) and provide a prototype for
hardware implementation.

Second, we propose a lightweight congestion event capture
mechanism on commodity switches. We leverage the fact that pack-
ets are ECN-marked when congestion events occur [8, 75]. Inspired
by Everflow [76], we obtain information about the flows involved
in congestion events by matching and mirroring the congestion
experienced (CE-marked) packets to an analyzer. Additionally, we
mitigate the bandwidth overhead caused by duplicating packets
of elephant flows by packet sampling. We realize the matching,
packet sampling, and mirroring operations with common functions
available in commodity switches [1, 2, 4, 13].

Third, we present how to perform network-wide synchronized
analysis on an analyzer and give several use cases. Themicrosecond-
level rate measurements can be utilized to perform fine-grained
traffic analysis, such as in-depth analysis of transport process and
debugging underutilization. The detected congestion events can be
used to analyze the micro-scale load situation of the network and
provide the distribution of congestion duration. More importantly,
by pushing the rate curves and events together, network operators
can replay congestion events by plotting the rate variation of the
associated flows near the event occurrence.

We evaluate µMon through testbed deployment and simulations
at a granularity of 8.192 µs. In a network under 15% load running
the Hadoop workload [48], WaveSketch can achieve 3.5-57x higher
accuracy (across four metrics) than baseline solutions in measuring
microsecond-level flow rates, with an average bandwidth require-
ment of 5 Mbps per host. Besides, µMon can achieve a 99% recall
for congestions exceeding ECN KMax threshold with 31-82 Mbps
bandwidth per switch, with main flows captured. Operators can
further decrease the overhead at the expense of reduced accuracy.

This work does not raise any ethical issues.

0 200 400 600 800 1000
Time Window (10 us)

10

20

30

R
at

e
(G

bp
s) 10 us 10 ms

Figure 1: Changes in flow rate at different timescales. The

flow is experiencing contention with background traffic and

exhibits oscillatory behavior.

2 MICROSECOND-LEVEL NETWORK

MONITORING

In this section, we begin by highlighting the importance of en-
abling microsecond-level network monitoring in data center net-
works (DCNs). Next, we outline our main objectives, the associated
benefits, and practical challenges.

2.1 Background

Data center networks now boast ultra-low end-to-end latency mea-
sured in tens of microseconds [23, 37]. On the one hand, current
switching hardware can complete packet forwarding within a range
of hundreds of nanoseconds to a few microseconds [43]. On the
other hand, advanced transport protocols like RDMA minimize la-
tency on the host side by utilizing techniques such as kernel bypass
and hardware offloading. As a result, the performance enhance-
ments in data centers lead to flow behaviors and network congestion
events occurring at the microsecond timescale.

As for microsecond-level flow behaviors, application traffic can be
rapidly initiated at the microsecond scale, converging on specific
network links and leading to congestion. Congestion signals such
as congestion notification packets (CNP) are returned within tens
of microseconds following the network’s Round-Trip Time (RTT),
leading to noticeable adjustments in flow rates. Figure 1 showcases a
flow rate curve gathered from our RDMA testbed, where we execute
the WebSearch workload [8] and induce traffic contention within a
single bottleneck topology. In the 10-µs observing granularity, the
flow rates reveal intricate patterns characterized by peaks, deep
troughs, and recoveries. These patterns reflect the initial throughput
of the flows, adjustments made in response to congestion, recovery
of flow rate, and potential oscillations that may raise concerns.
However, most of the existing flow measurement methods work at
tens of millisecond granularity [26, 39, 53]. As shown in Figure 1,
the 10-ms observing window yields only an average perspective,
masking the subtle complexities and transient behaviors evident at
the microsecond timescale.

As for microsecond-level congestion events, network congestion
such as microbursts, packet loss, load imbalance, and PFC pauses
frequently occur in data centers [75]. These network events increase
the network latency and cause performance jitters [29]. With the
rise in link bandwidth, the accumulated packets in the queue will
be quickly emptied, making the capture timing of these congestion
events fleeting. However, existing Simple Network Management
Protocol (SNMP) systems and vendor-specific interfaces typically

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Microsecond-level Network Monitoring System

Traffic Measurement Network Event Detection

Programmable
Switches

Commodity
Switches

Interface
granularity

Lumina ConQuest

Task ?

Granularity? Platform?

Flow
granularity

Packet
granularity

MilliSampler Valinor μMon-Host μMon-NetBurstRadar...

Figure 2: Taxonomy of microsecond-level network monitor-

ing systems.

work at the millisecond to the minute level [47], making it impossi-
ble to accurately capture transient congestion events, analyze the
root cause and take targeted solutions.

2.2 Objectives and Benefits

To capture fine-grained flow behaviors and congestion events, we
urgently need to enhance the monitoring time granularity of the
data center networks to the microsecond timescale. Recently, a
group of works has achieved microsecond-level precision monitor-
ing from various aspects. As shown in Figure 2, these efforts can be
broadly classified into two twomain categories: trafficmeasurement
and network event detection.

For traffic measurement, Millisampler [20] is a data-center-scale
monitoring system that measures microbursts at interface granular-
ity (e.g., the total received and transmitted bytes of a port or queue
in a short time window). However, the per-flow measurements are
not within their design scope. Valinor [49] and Lumina [66] focus
on in-depth analysis of host/NIC stacks by tracking every packet or
sk_buff arriving event. Nevertheless, reducing resource overhead
to facilitate network-scale deployments is not their primary objec-
tive. For network event detection, state-of-the-art systems such as
ConQuest [12] and BurstRadar [29] need to leverage emerging pro-
grammable switches. Moreover, ConQuest’s support for flow granu-
larity measurements focuses on immediate in-data-plane queries. It
recycles expired data and thus cannot obtain complete rate curves.
In this paper, we aim to achieve the following two new objectives:
• Microsecond-level flow rate measurements at scale.We
aim to track rate variations for each flow throughout its lifecycle
at the microsecond level, capturing both burst rate fluctuations
and long-term trends in flow rate changes. The solution should
be lightweight to facilitate network-wide deployments.
• Congestion detection/analysis on commodity switches.

We aim to detect transient congestion events entirely using
commodity switches, as many data centers still use legacy de-
vices. More importantly, we must enable event context replay
to analyze the causes and subsequent effects of the event.

Enabling the two objectives will bring significant benefits (B#) in
following aspects:
B1. Analyzing performance issues of applications and trans-

port algorithms: Fine-grained flow rate information can accu-
rately reflect the network behavior of applications. For instance,
we can access the working state of the transport-layer algorithms
by observing the flow rates at the round-trip time (RTT) scale. This
analysis helps determine whether the congestion control protocol
operates correctly (e.g., convergence, fairness) and whether the
related parameters are appropriately set. Besides, the information

100

300

500
DCTCP WebSearch

5 15 25 35 45
Link Load (%)

10

30

50
Facebook Hadoop

In
cr

ea
se

 F
ac

to
r

Figure 3: The amplification factor of measurement data vol-

ume introduced by 10-us window measurement.

can also help us infer the reasons for the low throughput. For exam-
ple, multiple gaps in a flow rate curve indicate that the insufficient
throughput results from inadequate application data.
B2. Understanding themicro-scale load status of the network:

Capturing congestion events can provide a fine-grained understand-
ing of the load conditions of links in the network. By combining
it with microsecond-level flow rate information, we can replay
the causes and consequences of the events. For example, when a
microburst occurs, we can query the relevant flow rate near the
corresponding time to distinguish the root cause and the event’s
subsequent impact on victim flows. As a result, we can identify
the links most prone to congestion and the main contributors and
victims of the bottlenecks, which enables us to develop targeted
strategies to prevent future congestion.
B3. Modeling microscopic traffic behavior and guiding net-

work specifications: Existing traffic models are idealized as they
do not consider the operational mode of the upper-layer application
or the interference caused by the hardware and software operating
environment. With the microsecond-level measurements, operators
can model microscopic traffic behavior that better fits real network
workloads. Additionally, information about peak rates and duration
has significant implications for optimizing chip parameters, such
as buffer size, ECN marking, and meters.

2.3 Challenges

Enablingmicrosecond-level networkmonitoringwill greatly benefit
network management, analysis, and optimization. However, there
is no such thing as a free lunch. There are three major challenges
(C#) to achieving the two objectives:
C1. How to reduce significant memory and bandwidth over-

head? In flow rate measurements at a time granularity 𝛿 , the num-
ber of required counters for a flow 𝑓 is 𝑛(𝑓 , 𝛿) = 𝑡𝑓

𝛿
, where 𝑡𝑓

denotes the flow’s active time. The total expected number of coun-
ters in time granularity 𝛿 for a specific traffic workload is 𝑁 (𝛿) =∑

𝑓 𝑛(𝑓 , 𝛿). We evaluate the counter increase factor 𝑁 (10𝜇𝑠)
𝑁 (10𝑚𝑠) (i.e.,

refining the time granularity from 10ms to 10 µs) under two popular
workloads. As shown in Figure 3, the counters increased by 34.4x in
Facebook Hadoop [48] and 387x in DCTCPWebSearch [8] when the
link load is over 35%. Suppose each measurement window uploads
20 KB of measurement data every 10 ms. Recklessly expanding to a
10 µs granularity will result in a bandwidth consumption of up to
6.34 Gbps in the WebSearch workload when the link load is over
35%, and the situation worsens when the link load becomes heavier.
The data volume mentioned refers to that of a single device. When

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

multiplied by tens of thousands of network devices, the resulting
data volume becomes overwhelming.

State-of-the-artmeasurement systems [24, 26, 39, 53, 63, 71] work
at tens of milliseconds of granularity. Directly refining their mea-
surement window to the microsecond level results in unacceptable
bandwidth overhead. Using traditional compression methods (e.g.,
Huffman coding [38], LZW [42]) in the data plane is impractical
due to their complex computational requirements, such as handling
variable bit widths, executing floating-point operations, and dy-
namic memory allocation. If we deploy them using CPUs, we first
need to transfer the extensive counters from the data plane to the
control plane, which will significantly strain device PCIe interfaces
and computation resources. Persistent sketches [60] are a class of
multi-version data structures from database communities. They
use the piecewise-linear approximations (PLA) method [45], which
requires complex calculations involving the half-plane intersection
of two polygons.
C2. How to capture transient congestion events in the net-

work? The current network observation methods in data centers
typically include polling hardware counters through control plane
interfaces, which operate at the millisecond to the minute level.
However, they may fail to capture congestion events that occur
between two polling intervals. Additionally, the counters can only
provide information about the queue length without further analy-
sis of event details. For instance, they cannot differentiate which
applications contribute to congestion and how it impacts the net-
work. To address these limitations, recent efforts [29, 54, 73] have
leveraged programmable switches to achieve microsecond-level
event monitoring by directly accessing the queue length in the
data plane. Nevertheless, we must take commodity switches into
account in our design, as many data centers still use fixed-function
switches.
C3. How to distribute measurement functions among net-

work devices? To achieve microsecond-level traffic measurement
and congestion event detection, deploying dedicated measurement
modules in network devices is imperative. However, simultaneously
deploying the two functionalities across all network devices would
be overkill since it will result in additional bandwidth overhead (e.g.,
redundant traffic statistics) and necessitate the programmability of
all devices. Designing a reasonable microsecond-level monitoring
architecture and coordinating analysis from distributed measure-
ments remains an unexplored area of research.

3 µMON OVERVIEW

This section gives a high-level introduction of µMon. As shown
in Figure 4, µMon has three functional components deployed at
different data center locations.
µFlow measurement at hosts. We perform microsecond-level
flow (µFlow) measurements at end hosts. To address C1, we design
WaveSketch, which leverages wavelet transform theory to compress
flow rate counters efficiently. The wavelet transform is a powerful
mathematical tool used for signal analysis. It can capture the most
significant features of a signal at multiple scales, guiding subsequent
compression. In §4, we introduce the fundamental principles of
the wavelet transform and present how WaveSketch applies this

DCN

μEvent Detection

μFlow
Measuring

Microburst

PFC Storm

Drop

Imbalance

...

WaveSketch

Event Packets

R
at

e

μs-level Rate

μMon
Analyzer

μTraffic
Analyzing

μEvent Replay

...

Figure 4: µMon system overview

technology to network measurement, including basic structure,
update and query procedures, and hardware implementation.
µEvent detection at switches. We detect transient congestion
events (µEvent) in network switches. To address C.2, we imple-
ment an event capture solution based on Access Control Layer
(ACL) tables and remote mirroring, which are common functions in
commercial switches. In particular, we mirror the packets involved
in congestion events to the analyzer and reduce the bandwidth
overhead through sampling. In §5, we introduce how to capture
transient congestion events in the network efficiently.
Network-wide analysis at µMon analyzer. The µFlow measure-
ments and detected µEvents are sent to a unified analysis platform
for network-wide analysis. Operators can utilize µMon analyzer to
address numerous pain points that were previously unsolvable by
monitoring systems with coarse time granularity. In §6, we intro-
duce how to conduct the network-wide synchronized analysis and
introduce several typical use cases of µMon, such as fine-grained
application performance analysis and congestion event replay.

The above architecture solves C.3 by considering the character-
istics of different network locations. Specifically, we only perform
microsecond-level flow measurements at end hosts, where we can
cover all application traffic without introducing repeated statis-
tics. Moreover, using technologies such as eBPF [57] and smart-
NICs [17, 32, 56], we can easily deploy customized measurement
algorithms at hosts with a relatively acceptable cost. As for con-
gestion events, since they can only be captured on the network
side, we use common functions available in commodity switches,
making it feasible to implement in existing data centers.

4 µFLOWMEASURING AT HOSTS

This section provides a detailed description of µFlow measurements
at end hosts. We first introduce the wavelet transform and explain
why we adopt wavelet methods to compress flow rates and the
challenges of applying them to network measurements (§4.1). Next,
we delve into the design ofWaveSketch and elucidate how it utilizes
the wavelet approach for network measurements (§4.2). Finally, we
give the hardware implementation of WaveSketch (§4.3).

4.1 Preliminary on Wavelets Transform

The wavelet transform [67] is a powerful mathematical tool for
analyzing time series signals. In flow rate measurement, the concept
of ‘signal’ can be regarded as the variation of a flow’s packet or

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Appro 𝑎11 =16 𝑎12 =9 𝑎13=6 𝑎14=10

L1
Detail d11=−2 𝑑12 =3 𝑑13 =−2𝑑14 =−2

Appro 𝑎21=16+9=25 𝑎22=6+10=16

Detail 𝑑21 =16−9=7 𝑑22 =6−10=−4

Appro 𝑎31=𝑎21+𝑎22 =25+16=41

Detail 𝑑31 =𝑎21−𝑎22=25−16=9

L2

L3

41 9 7 −4 −2 3 −2 −2
𝑎31 𝑑31

7
9 6

3 2
4 4

6

Transformation

Reconstruction

Compression

coefficient selection

41 9 7 −4 0 3 0 0

25 16 7 −4 0 3 0 0

16 9 6 10 0 3 0 0

8 8 6 3 3 3 5 5

Original

Reconstuct

𝑑14𝑑21 𝑑22 𝑑11 𝑑12 𝑑13

(a±d)/2

...

(a±d)/2

Figure 5: An example of wavelet-based counter series com-

pression in µMon.

byte counters within consecutive time windows. In the subsequent
paper, we will interchange ‘signal’ and ‘sequence of count values’
for ease of expression.

Discrete Wavelet Transform (DWT [51]) is the discrete version
of the wavelet transform. As shown in Figure 5, a DWT-based signal
compression involves three stages: transformation, compression,
and reconstruction. Given a signal 𝑓 of length 𝑛, the transforma-
tion stage hierarchically decomposes it into a set of basis functions
known as wavelets. The decomposition process, performed over 𝐿
levels, yields two categories of coefficients: approximation coeffi-
cients and detail coefficients. The coefficients can be understood as
the weight of a particular wavelet on the original signal. At each
level, a low-pass filter generates the approximation coefficients,
representing the signal’s coarse or average characteristics, while
a high-pass filter produces the detail coefficients, encapsulating
the signal’s fine or rapidly changing details. The wavelets in the
high-pass filter are generated from a single mother wavelet 𝜓 (𝑥)
through scaling and translation, and their coefficients𝑊𝑓 on the
signal are given by:

𝑊𝑓 [𝑠, 𝑡] =
1
√
𝑠

∞∑︁
𝑖=0

𝑓 [𝑖]𝜓
(
𝑖 − 𝑡
𝑠

)
(1)

where 𝑠 is the scale parameter and 𝑡 is the translation parameter. Fi-
nally, the last-level approximation wavelets and the detail wavelets
at all 𝐿 levels form a set of orthogonal bases with the dimension
𝑛. Provided that no coefficients are discarded, the reconstruction
phase of the DWT can accurately restore the original signal from
these coefficients.

The compression process occurs between the transformation
process and the reconstruction process. It removes some insignifi-
cant coefficients by treating them as zeros. If some coefficients are
already zero, lossless compression can be directly applied. Remov-
ing non-zero coefficients can achieve further compression while
producing some reconstruction errors. In the example shown in
Figure 5, we remove three smallest detail coefficients 𝑑11, 𝑑13, 𝑑14.
The reconstructed signal still preserves the fundamental waveform.
Note that the operations in Figure 5 is a customized version of
wavelet transform, which will be described in detail in § 4.2.

The most advantageous point of the wavelet transform lies in
its ability to analyze signal characteristics at different scales, also
called multi-resolution analysis. It can automatically capture the
strength of the signal changes at various time points and time scales.
Putting this feature in the flow measurement scenario, it can an-
alyze varying degrees of rate change, including short-term jitters
(i.e., shallow-level detail coefficients) and long-term ups and downs
(i.e., deep-level detail coefficients). Therefore, when performing
compression, it can capture the components that best characterize
the signal from different scales and discard those minor compo-
nents, thus achieving a good balance between compression ratio
and measurement accuracy.

Although the wavelet transform is quite suitable for flow rate
measurement, applying the wavelet transform in network measure-
ment still requires addressing three problems. First, we need to
simplify the calculation of coefficients in the wavelet transform,
which involves complex multiplication and floating-point opera-
tions, as shown in Equation (1). Second, an effective strategy for
coefficient selection is required to balance the compression andmea-
surement accuracy. Last, the wavelet transform described above is
performed offline in a complete sequence. However, to accommo-
date the limitations of memory and enable compression without
waiting for all windows to finish, we need to adapt the wavelet
transform to an online process.

4.2 WaveSketch DESIGN

We introduce WaveSketch, which applies the wavelet-based com-
pression to network measurement and solves the above three prob-
lems. We present the two versions of WaveSketch in turn: a basic
version and a full version.
Structure of the basic WaveSketch. As shown in Figure 6, the
basic WaveSketch is built upon a Count-Min sketch [15] consisting
of 𝑑 ·𝑤 buckets. In WaveSketch, we incorporate an internal time
dimension to refine each bucket to a microsecond-level window
sequence with length 𝑛. Specifically, we introduce several variables
in each bucket, including an initial window id𝑤0, current window
offset 𝑖 , current window count 𝑐 , approximation coefficients set A
and detail coefficients set D. The first packet accessing a bucket
will initialize𝑤0, marking the beginning of the window sequence.
𝑖 denotes the current window offsets to 𝑤0 while 𝑐 denotes the
current window’s packet/byte count value. During a measurement
period 𝑇 (e.g., 10 ms), each bucket generates a sequence of window
counters with a maximum length of 𝑛, denoted as 𝑐1, 𝑐2, . . . , 𝑐𝑛 .
Whenever a window counter 𝑐𝑖 finishes counting, we immediately
perform wavelet transformation for this counter. For the generated
wavelet coefficients, we perform a compression process, which
filters out unimportant coefficients and saves important coefficients
in sets A and D, where |A| + |D| ≪ 𝑛.
Update of the basic WaveSketch. The update of WaveSketch
is similar to that of the Count-Min Sketch. In both cases, a set
of counter buckets are selected based on 𝑑 pairwise independent
hash values applied to flow identifiers, such as 5-tuple. However,
WaveSketch introduces three internal stages for each bucket update:

• Counting.When a new packet arrives at𝑤 𝑗 with value 𝑣 , if the
packet still belongs to the current counting window𝑤𝑖 (i.e., 𝑖 ==
𝑗), 𝑐 is incremented by 𝑣 , and the update is terminated. Otherwise,

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

𝐶𝑑,𝑤
d

w

f, 𝑤𝑗

Transform

𝑐 (A)pprox

𝑖, c

Compress

top-k

𝑤0 𝑖

(D)etail

coeff

reset
window
finish?

Counting

Figure 6: WaveSketch basic version

𝑖 and 𝑐 are passed to the transformation and compression stages.
After that, 𝑖 and 𝑐 are set to 𝑤 𝑗 − 𝑤0 and 𝑣 , respectively, for
counting the packets in the next microsecond-level window.
• Transformation. In this stage, wavelet coefficients are calcu-
lated in an online manner every time a window counter 𝑐𝑖 is
finished. We adopt a variant of the Haar wavelet [52] as the
mother wavelet, which is defined as:

𝜓 (𝑖) =

1 if 0 ≤ 𝑖 < 0.5,
−1 if 0.5 ≤ 𝑖 < 1,
0 otherwise.

(2)

As a step function, the Haar wavelet is adept at encapsulating
significant local variations within a signal. This feature helps us
capture rapid flow rate changes. More importantly, it is highly
suitable for data-plane implementation because it can convert
the multiplication operations into addition and subtraction op-
erations when calculating the coefficients. For instance, for a
wavelet with scale 𝑠 = 2 and translation 𝑡 = 0, its coefficient can
be simplified to 1√

2
(𝑓 [1] − 𝑓 [0]), according to Equation (1). The

multiply 1√
2
operation is used to maintain energy conservation.

We eliminate it in WaveSketch while the entire transformation
maintains its reversibility. As shown in Figure 5, during the
transformation, an important observation is that each window
counter operates on a specific last-level approximation coef-
ficient and the latest detail coefficient within each level. We
use this feature to directly calculate the last-level approximate
coefficients and implement the online transformation of the de-
tail coefficients at each level. As shown in Algorithm 1, we use
window offset 𝑖 to determine the position of the last-level approx-
imation coefficient (lines 14-15) and how the counter contributes
to each-layer latest detail coefficients (lines 22-27).
• Compression. The transformation incrementally produces a
small set of last-level approximation coefficients with size 𝑛

2𝐿 . We
retain all of them to accurately reconstruct the total size of a flow.
For each layer, one detail coefficient is generated for every 2𝑙+1
counter. When a detail coefficient is generated, the compression
stage selectively retains the top-k most significant coefficients
with a weight 1/

√
2𝑙 . This approach minimizes the Euclidean

Distance between the reconstructed and original counter series
(please see the proof in Appendix A). Unfortunately, the ideal
algorithm is feasible for CPUs but needs to be simplified to
implement on an ASIC data plane. We approximate the weighted
and top-k operations for a practical hardware implementation,
which will be introduced in § 4.3.

Computational complexity analysis. The pseudo-code of the
WaveSketch update is shown in Algorithm 1. For most packets, the

Algorithm 1 WaveSketch Counter Update
1: Initialize𝑤0, 𝑖, 𝑐 ← 0
2: Initialize A ← array(𝑠𝑖𝑧𝑒 = 𝑛/2𝐿)
3: Initialize D ← priority_queue(𝑠𝑖𝑧𝑒 = 𝐾)
4: Initialize _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 ← array(𝑠𝑖𝑧𝑒 = 𝐿)
5: procedure Counting(𝑤 𝑗 , 𝑣)
6: if 𝑤0 == 0 then
7: 𝑤0 ← 𝑤 𝑗

8: end if

9: if 𝑤 𝑗 == 𝑤0 + 𝑖 then
10: 𝑐 ← 𝑐 + 𝑣
11: else

12: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑐)
13: 𝑐 ← 𝑣, 𝑖 ← 𝑤 𝑗 −𝑤0
14: end if

15: end procedure

16: procedure Transformation(𝑖, 𝑐)
17: 𝑝𝑜𝑠_𝑎 ← 𝑖 >> 𝐿
18: A[𝑝𝑜𝑠_𝑎] ← A[𝑝𝑜𝑠_𝑎] + 𝑐
19: for 𝑙 ← 0, . . . , 𝐿 − 1 do
20: 𝑝𝑜𝑠_𝑑 ← 𝑖 >> (𝑙 + 1)
21: if 𝑝𝑜𝑠_𝑑 > _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑖𝑑𝑥 then

22: 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑙, _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙])
23: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] = {𝑝𝑜𝑠_𝑑, 0}
24: end if

25: 𝑠𝑖𝑔𝑛_𝑑 ← (𝑖 >> 𝑙)&1
26: if 𝑠𝑖𝑔𝑛_𝑑 == 0 then
27: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 ← _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 + 𝑐
28: else

29: _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 ← _𝑑𝑒𝑡𝑎𝑖𝑙𝑠 [𝑙] .𝑣𝑎𝑙 − 𝑐
30: end if

31: end for

32: end procedure

33: procedure Compression(𝑙, 𝑑𝑒𝑡𝑎𝑖𝑙)
34: Retain the top-K 𝑑𝑒𝑡𝑎𝑖𝑙 coefficients in D by comparing

1√
2𝑙
|𝑑𝑒𝑡𝑎𝑖𝑙 .𝑣𝑎𝑙 |

35: end procedure

update process only requires a counter accumulation with a time
complexity of𝑂 (1). When a packet triggers a new countingwindow,
the old counter must be transformed and compressed (lines 18-21),
introducing additional computational overhead. Assume that there
are 𝑚 packets within the measurement period 𝑇 , divided into 𝑛
microsecond level windows. Using amortized analysis, we demon-
strate that the average update cost per packet is𝑂 (1+𝜖 (𝐿 + 𝑙𝑜𝑔𝐾)),
where 𝜖 = 𝑛

𝑚 ≤ 1 (please see Appendix B for details). When the
network load is heavy, 𝜖 = 𝑛

𝑚 → 0, and 𝐿 + 𝑙𝑜𝑔𝐾 is a small constant
based on the desired compression ratio. Therefore, the average
update cost per packet is still 𝑂 (1). Although a higher complex-
ity is required for the worst-case transformation and compression,
one key feature is that WaveSketch can operate independently on
each level’s coefficient, as shown in Algorithm 1 (lines 16-28). The
feature enables an efficient hardware implementation (see § 4.3).
Compression ratio analysis. Assuming the number of window
counters is denoted as 𝑛. For each bucket, the algorithm requires
storing 𝑛

2𝐿 approximation coefficients in A, 𝐾 detail coefficients
in D, and 𝐿 temporary detail coefficients (referred to as variable
_𝑑𝑒𝑡𝑎𝑖𝑙𝑠 in Algorithm 1). When transmitting data to the analyzer,
it only needs to send 𝑤0, A and D, resulting in bandwidth us-
age of 𝑂 (𝑛2𝐿 + 𝐾). Therefore, the compression ratio is given by

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(𝑛2𝐿 + 𝛼 · 𝐾)/𝑛, where 𝛼 > 1 represents the additional metadata of
reserved detail coefficients, such as the detail coefficients’ level and
index. For instance, if we set 𝐿 to 8 and 𝐾 to 32, assuming 𝛼 is 1.5,
and considering a window sequence with a length of 𝑛 = 2000, the
expected compression rate is 0.028. This implies that when mea-
suring a flow of 20 ms at a granularity of 10 us, WaveSketch can
achieve the 0.028 compression rate. Increasing 𝐿 or decreasing 𝐾
can improve the compression rate, and the compression effect will
be more obvious for a longer measurement period 𝑇 with larger
𝑛. As a trade-off, the increase of 𝐿 will consume more computing
resources while reducing 𝐾 would lose details of flow rate changes.
We discuss the parameter settings in detail in § 7.1.
Query of the basic WaveSketch. The query of WaveSketch is
similar to Count-Min Sketch, which selects 𝑑 buckets by 𝑑 hash
functions and returns the one with the smallest query value among
the 𝑑 buckets. The difference is that a reconstruction process is re-
quired for each bucket. The reconstruction is to recover the original
signal from the detail and approximation coefficients, which should
be performed in the µMon analyzer. As shown in Figure 5, the
reconstruction begins at the deepest level. The approximation coef-
ficients are upsampled with the corresponding detail coefficients to
reconstruct the approximation coefficients at the shallower level.
In particular, for the approximation coefficient 𝑎𝑙,𝑖 and detail coeffi-
cient 𝑑𝑙,𝑖 of layer 𝑙 , we can obtain two approximation coefficients
of layer 𝑙 − 1, which are 𝑎𝑙−1,2𝑖−1 =

𝑎𝑙,𝑖+𝑑𝑙,𝑖
2 and 𝑎𝑙−1,2𝑖 =

𝑎𝑙,𝑖−𝑑𝑙,𝑖
2

respectively, where 𝑖 = 1, . . . , 𝑛2𝑙 . For the detail coefficients that are
not preserved, we treat them as 0. This process is repeated, pro-
gressively using shallower-level detail coefficients until the original
signal is fully reconstructed. Due to space constraints, the detailed
reconstruction algorithm is presented in Appendix C.
The full version of WaveSketch. To realize the objectives of ap-
plication traffic analysis, it is necessary to have explicit knowledge
of the fine-grained rate information of heavy flows. The full WaveS-
ketch consists of a heavy part and a light part, serving heavy flows
and mice flow, respectively. The heavy part is a hash table with a
flow key, a counter bucket, and a vote in each row. It elects heavy
flows and directly applies wavelet-based compression for each flow.
The light part is a basic version WaveSketch used to measure all
mice flows but introduce hash collisions. Due to the existence of
the temporal dimension, hash collisions do not necessarily result in
counting errors, as they can act in different time windows. There-
fore, the width𝑤 of WaveSketch is usually smaller than traditional
sketches, as it is set according to the number of concurrent flows
in a microsecond-level window rather than the total number of
flows during the entire measurement period. Moreover, the hash
process can effectively aggregate those mice flows into a small
set of elongated flows, which can be considered background flows
outside the heavy flows. It has a positive effect on wavelet-based
compression since it is easier to achieve a better compression rate
on a long sequence.

We use majority vote [33] to elect heavy flows from mice flows,
an algorithm widely applied to existing sketches [55, 63] for heavy-
hitter detection. When a heavy candidate flow is evicted, a new
challenge is that the 𝑛

2𝐿 + 𝐾 wavelet coefficients in the heavy part
are not easily evicted to the light part in WaveSketch. To address
this, we update the heavy and light parts simultaneously when

𝑤0

𝑖

𝑐
approx

judge if new
window

detail-l1

detail−l2

detail−l3

..
.

compute multi-level
_𝑑𝑒𝑡𝑎𝑖𝑙 in parallel

update or reset
counterInit 𝑤0

filter unimportant coefficients
with a pre-set threshold

detail−l4

...
rshift ⌊

𝑟

2
⌋

rshift ⌊
𝑟

2
⌋

calculate weights and eliminate
the 2 operations by branching

filter 1

filter 2

𝐷𝑜𝑑𝑑

𝐷𝑒𝑣𝑒𝑛

Stage 1 Stage 2 Stage 3,4 Stage 5 Stage 6 Stage 7

Figure 7: WaveSketch implementation in PISA architectures.

Blue boxes denote buckets in registers.

heavy flow packets arrive. In this way, when a heavy candidate
is evicted, we only need to cancel the heavy part directly since it
has been completely counted in the light part. When querying, the
value of the light part may be overestimated due to the existence
of heavy flows, so we need to subtract the value of the heavy part
flows when reconstructing the light part.

4.3 WaveSketch Implementation

There are two main challenges in implementing a WaveSketch. The
first is the long logic of computing the multi-level wavelet coeffi-
cients. The second is the selection of weighted top-k coefficients
during the compression stage.
CPU Implementation. The first challenge does not affect CPUs
since they do not impose a limit on the logical length. As for se-
lecting the top-k coefficients, we can efficiently accomplish this
task using min-heaps. In addition, the multi-row sketch updating
and the multi-level wavelet coefficient calculations can be further
accelerated by using Single Instruction Multiple Data (SIMD) in-
structions [55, 69].
Hardware Implementation. While the two challenges can be
easily addressed on CPU-based platforms, they pose difficulties for
hardware implementation based on ASIC chips with a pipelined
architecture, such as Protocol-Independent Switch Architecture
(PISA [10]). Specifically, the resource utilization of a pipelined ar-
chitecture is always determined by the longest logic of an algorithm.
Although the transformation and compression stages occur only on
a small number of packets (i.e., the last packet of amicrosecond-level
window), we must pre-allocate sufficient computational resources
for the worst-case logic in the hardware pipeline. In addition, the
weight calculation with 1√

2
(i.e., in the weight 1√

2𝑙
) and the top-k

election are also unrealistic in PISA hardware chips.
We first leverage the property that the computation of the detail

coefficients at different levels in WaveSketch is mutually indepen-
dent. As shown in Figure 7, we can compute these coefficients in
parallel (Stage 3, 4). This dramatically reduces the logic length of
the algorithm. For the weighted top-k election, we approximate the
process using a branching and thresholding method. Specifically,
we observe that as the level increases, the weights are as follows: 1√

2
,

1
2 ,

1
2
√
2
, 14 , . . .We perform the weighted comparisons based on odd

and even levels separately using two priority queues. This way, the
weight calculation between coefficients with the same parity will

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

Match (ECN) Match (PSN) Action

(0b) 11 (0b) *000 Mirror
...

CE
PSN=15

CE
PSN=16

CE
PSN=17

mirror

No CE
PSN=8

...

Figure 8: Match, Sample (ratio =
1
8), and Mirror

become exponential powers of 2, which can be achieved through
right shifting. After the coefficient weighting, we use a threshold
method to approximate the top-k selection. However, selecting the
threshold is a challenge. We sample flow traces from actual scenar-
ios in advance and measure them using an ideal WaveSketch based
on the CPU. We treat the median value of minimum values in pri-
ority queues as a threshold reference, which is then applied to the
hardware version. Our experimental results in § 7.1 demonstrate
that the accuracy of the hardware approximate implementation is
close to the accuracy of an ideal WaveSketch.

5 µEVENT DETECTION AT SWITCHES

Beyondmicrosecond-level trafficmeasurements, network operators
are also concerned about microsecond-level network events. This
section focuses on solving transient congestion events caused by
network traffic, which is widespread and challenging to observe di-
rectly. We name these events as µEvent, including microbursts, PFC
storms, load imbalances, and packet loss. To detect these events on
commodity switches, our approach is to match and mirror packets
that exhibit event-specific characteristics while reducing bandwidth
overhead through packet sampling:
Event-specific characteristics in packets. All the µEvents men-
tioned above are queue-related events. Currently, both the DC-
QCN [75] algorithm and the DCTCP [8] rely on network devices to
mark ECN (Explicit Congestion Notification) to sense congestion
in the network. Hence, a common characteristic of these events
is that packets exceeding the ECN marking threshold are marked
with the CE (Congestion Experienced) field. In µMon, we identify
packets with the CE field marked as event packets and mirror them
accordingly. For packet loss, CE packets are generated prior to
the tail drop, and some advanced switches support features like
deflect-on-drop [73] to handle the loss packets directly.
Match and mirror the event packets. Nowadays, commodity
switches commonly support packet mirroring triggered by access
control list (ACL) tables [2]. For example, Everflow [76] matches
flags such as TCP SYN, FIN, and RST and mirror related packets to
track TCP connections. Similarly, we can achieve the desired logic
by adding an ACL rule that matches the location and length of the
CE field and associating it with themirroring action. When defining
the mirroring action, we utilize the remote mirroring function to
transmit the event packets to µMon analyzer. µEvents on different
ports are distinguished by attaching different VLAN tags.
Reduce bandwidth overhead by sampling. The above approach
mirrors all packets marked with CE. However, it will result in
significant bandwidth overhead when an elephant flow is mirrored.
In µMon, we introduce an indirect packet deduplication method
using sampling. Specifically, we leverage the characteristic that

adjacent packets in a flow have different sequence numbers (SN) 1,
such as sequence number in TCP and packet sequence number (PSN)
in RoCEv2 [58]. As shown in Figure 8, we can match the lowest𝑤
bits of the SN with ACL rules, achieving a sampling probability of
1
2𝑤 . When analyzing events, our focus is usually on understanding
the behavior of heavy flows, while for mice flows, we only need to
know their quantity and overall distribution [62]. Therefore, the
sampling does not lead to significant information loss because it is
highly probable that the sampler will capture at least one packet
for each heavy flow.

Moreover, introducing programmable switches would signif-
icantly enhance the µEvent detection capabilities. Namely, pro-
grammable switches are capable of customized observation of data-
plane events. ConQuest [12], BurstRadar [29], and Snappy [11] have
all leveraged them for advanced event detection and measurement
directly in the data plane. When programmable switches are avail-
able, µMon can adopt these designs for higher accuracy and recall
rate, and the solutions can also be cooperatively used with WaveS-
ketch for event replay. Besides, we can directly achieve effective
de-duplication of event packets and enable batch reporting [73],
promoting efficiency considerably.

6 µMON ANALYZER AND USE CASES

This section first introduces how µMon analyzer performs network-
wide synchronized analysis (§6.1). We then present several use cases
for using the microsecond-level statistics on the analyzer (§6.2).

6.1 Network-wide Synchronized Analysis

The microsecond-level flow rate measurements and captured net-
work events are sent to the µMon analyzer for comprehensive
analysis. However, when we need to perform network-wide traffic
analysis and replay congestion events, the time of different nodes
must be aligned. For example, to enable the congestion events replay,
we need to ensure that the time of the captured event corresponds
to a specific time window at the end hosts, allowing for precise
querying of the associated flow rate when the event occurs.

When collectingWaveSketchs and µEvent packets, measurement
data also carry the corresponding time information to the µMon an-
alyzer. In particular, WaveSketch carries time information (i.e.,𝑤0)
in each counter bucket, and switches can configure the mirroring
port to add a local timestamp to each mirrored packet [13]. More
importantly, time synchronization is essential among the hosts and
switches. To achieve the microsecond-level network monitoring,
data centers must deploy time synchronization technology oper-
ating at the nanosecond level. The conventional synchronization
protocol Network Time Protocol (NTP [6]) cannot achieve satisfac-
tory accuracy as it introduces millisecond-level errors. Fortunately,
Precision Time Protocol (PTP [59]) is widely deployed, along with
some advanced time synchronization methods [18, 30], which can
achieve stable nanosecond-level time synchronization. The errors
of these nanosecond-level synchronization methods do not extend
beyond two microsecond-level windows, which are considered suf-
ficient for µMon. When querying the flow rate, the rate of several
1Some scenarios also contain non-negligible traffic that is not TCP or RDMA protocols.
The key idea of the sampling is to construct a uniform probability filter based on
specific protocol fields. Therefore, a more general method is to match timestamps, a
random number, or checksum that varies per packet.

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 500 1000
Time Window (10 us)

0
10
20
30
40

R
at

e
(G

bp
s)

0 500 1000
Time Window (10 us)

0
10
20
30
40

R
at

e
(G

bp
s)

(a) TCP flow

0 200
Time Window (10 us)

0
10
20
30
40

R
at

e
(G

bp
s)

0 200
Time Window (10 us)

0
10
20
30
40

R
at

e
(G

bp
s) On-off flow

RDMA

(b) RDMA flow

Figure 9: Different flow behaviors evident at µs level.

windows before and after the event can be queried rather than fo-
cusing solely on the specific window in which the event occurred.

6.2 Use Cases

As a foundational capability, the microsecond-level measurements
can be used in many practical analysis and optimization tasks. We
list several typical applications here:
Analyzing application performance and transport algorithms.

The fine-grained rate measurements provided by WaveSketchs can
assist users in analyzing the patterns of their applications at the mi-
crosecond timescale. For example, the microsecond-level rate curve
aids users in analyzing the underlying causes of link underutiliza-
tion. Figure 9a presents a low-throughput TCP flow captured in our
testbed usingWaveSketch. Through the microsecond-level analysis,
we find the rate curve is intermittent, which indicates that the host
cannot provide sufficient data to send over the network continu-
ously. That is, the under-throughput is caused by the host (e.g., the
high latency of the TCP stack), which leads to gaps when transmit-
ting data. In another case, we can observe whether the congestion
control protocol is working correctly with the microsecond-level
flow rates. We generate RDMA flows with an on-off background
flow to compete with the RDMA flows. Figure 9b shows the rate
reaction of an RDMA flow when receiving disturbance. We can
evaluate the performance of the congestion control algorithm in
terms of key metrics such as convergence and fairness. In the past,
the above microsecond-level analysis could only be observed in a
simulation environment or a small-scale testbed. With µMon, users
can observe the fine-grained behavior of network-wide flows in
real-time with an acceptable bandwidth overhead.
Monitoring microscope network loads and replay congestion

events. By capturing ECN-marked packets, we can perceive the
location and timing of congestion in the network. As shown in
Figure 10a and Figure 10b, µMon can present a time-location map
of congestion events and the distribution of congestion duration.
Furthermore, suppose network operators are interested in a long-
lasting congestion event, indicated by an arrow in in Figure 10a.
As shown in Figure 10c, they can replay the congestion by plotting
the rate variation of the associated flows near the event occurrence
by querying WaveSketchs. Through the event replay, we learn that
the leading cause of the congestion is the contention of a bursty
(pink) flow with an existing (green) flow. Moreover, we can assess
the event’s impact on these flows, that the two flows converge to
a lower rate after around 100 µs, and a new burst flow causes a
further rate reduction. The detailed experimental settings of the
above case are introduced in §7.

100000 110000 120000
Time (us)

0

20

40

60

80

Li
nk

 ID

100 200 300
Duration (us)

0.0

0.5

1.0

C
D

F

(a) Congestion location

100000 110000 120000
Time (us)

0

20

40

60

80

Li
nk

 ID

100 200 300
Duration (us)

0.0

0.5

1.0

C
D

F

(b) Congestion duration

11790 11800 11810 11820
Time (window = 10us)

0
20
40
60
80
100

R
at

e
(G

bp
s)

(c) Event replay by WaveSketch

Figure 10: Congestion event detection and replay

Guide fine-grained traffic scheduling and simulations. Exist-
ing technologies support microsecond-level traffic scheduling [46,
61]. With the fine-grained flow rates and congestion information,
µMon can guide the scheduling process, improving system resource
utilization efficiency. Besides, the microsecond-level measurements
provide a more accurate understanding of traffic patterns, allow-
ing us to create simulation models that closely mirror real-world
scenarios.

7 EVALUATION

We evaluate µMon in a testbed and simulation environment and
conduct extensive experiments to assess its performance and re-
source overhead. We summarize the experimental results based on
the two main functions of µMon:
• µFlow measurements at hosts: In a typical scenario, WaveS-
ketch can achieve 3.5-57x better accuracy than baseline solu-
tions across fourmetrics under a window granularity of 8.192 µs.
Even with 1/8 of the memory usage, WaveSketch still maintains
higher accuracy. Each host requires around 5 Mbps bandwidth
to achieve less than 10% ARE and more than 90% energy sim-
ilarity in flow rate measurements. The hardware version of
WaveSketch achieves close accuracy and can be implemented
on PISA architecture chips with moderate overhead.
• µEvent detection at switches: For congestion events exceed-
ing the ECN KMax threshold, using a sampling rate of 1/64,
µMon can achieve a 99% recall ratio with 31-82 Mbps band-
width per switch, with main flows captured. Increasing the
sampling rate can further reduce bandwidth overhead but at
the expense of decreasing the recall of congestion below the
ECN KMax threshold. The ACL-based mirroring and sampling
methods can be implemented on commodity switches.

Setup. In the testbed, we evaluate µMon on an Arista DCS-7060CX
switch, a Tofino2 switch, and two Intel Xeon E5-2650 servers. They
are connected with 40 Gbps links. We implement WaveSketch on
CPUs and ASICs platforms using C++ and P4 language, respectively.
We also prototype µMon in a fat-tree topology (k=4) in NS-3, with a
100 Gbps link bandwidth and 1 µs per-hop latency. In the simulation,

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

500 1000 1500
Memory (KB)

0

10

20

30

Eu
cl

id
ea

n
D

is
ta

nc
e

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(a) Euclidean Distance

500 1000 1500
Memory (KB)

0.0

0.2

0.4

0.6

A
R

E

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(b) ARE

500 1000 1500
Memory (KB)

0.2

0.4

0.6

0.8

1.0

C
os

in
e

Si
m

ila
rit

y

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(c) Cosine Similarity

500 1000 1500
Memory (KB)

0.00

0.25

0.50

0.75

1.00

En
er

gy
 S

im
ila

rit
y

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(d) Energy Similarity

Figure 11: Accuracy evaluation on the 15%-load Hadoop workload. The window size is 8.192 µs.

500 1000 1500
Memory (KB)

20

40

60

80

Eu
cl

id
ea

n
D

is
ta

nc
e

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(a) Euclidean Distance

500 1000 1500
Memory (KB)

0.0

0.2

0.4

0.6

A
R

E

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(b) ARE

500 1000 1500
Memory (KB)

0.6

0.8

1.0

C
os

in
e

Si
m

ila
rit

y

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(c) Cosine Similarity

500 1000 1500
Memory (KB)

0.2

0.4

0.6

0.8

1.0

En
er

gy
 S

im
ila

rit
y

Fourier
OmniWindow-Avg
Persist-CMS

WaveSketch-Ideal
WaveSketch-HW

(d) Energy Similarity

Figure 12: Accuracy evaluation on the 25%-load WebSearch workload. The window size is 8.192 µs.

we can obtain the ground truth for all traffic characteristics and
network events, which are utilized to evaluate the performance of
µMon under network-wide deployments.
Workloads. We use two types of workloads. The first workload is
real RDMA flows collected from our testbed. We utilize the perftest
tool [5] to generate RDMA flows configured with a default DCQCN
algorithm. The second type workload is collected in the simulation
running 20-msWebSearch [8] and FacebookHadoop [48] workloads
under 15%, 25%, and 35% link load, containing 356-11773 flows.
Detailed workload information (e.g., level of burstiness, flow arrival
times) is introduced in Appendix D.

7.1 Evaluation on µFlow Measurements

Baseline. We compare WaveSketch against algorithms that incor-
porate compression techniques on flow counter sequences, includ-
ing Persist-CMS [60], OmniWindow [53], and Fourier transform
scheme [44]. For OmniWindow, we allocate𝑚 sub-windows based
on a givenmemory size and the bit-width of counters. Due to limited
memory space, each sub-window is coarser than the microsecond-
level window. We consider the rate of each sub-window to be the
rate of all microsecond-level windows within the sub-window and
named the solution OmniWindow-Avg. Note that only WaveSketch
and OmniWindow-Avg are suitable for data-plane implementation.
Parameter Setting. In the accuracy evaluation, we use an 8.192
µs observation window. The reason is that it can easily get the
window ID from the nanosecond-level hardware timestamp by
right-shifting 13 bits. For a general workload, 𝐷 is usually set to 3-5
for sketching algorithms [55, 70], and𝑊 depends on the number
of concurrent flows in a window. The wavelet parameters 𝐿 and

10
20
30 Original WaveSketch

0 200 400 600 800 1000
Time Window (8.192 us)

10
20
30 Original OmniWindow-Avg.

Fl
ow

 R
at

e
(G

bp
s)

Figure 13: Reconstruction with the same memory.

𝐾 are set according to the flow sequence length and the desired
compression rate. In this paper, we set WaveSketch with 𝐷 = 3,
𝑊 = 256. Since most traffic is finished in the tens of milliseconds
range, this results in a counter sequencewith amaximum length𝑛 of
around 500-10000. We set 𝐿 = 8 as a trade-off between compression
rate and resource cost, and set, while 𝐾 is set based on the given
memory size (e.g., 32-256). Longer flows are handled in multiple
reporting periods of WaveSketch.
Metrics: We adopt multiple metrics, including Euclidean Distance,
Cosine Similarity, Energy Similarity, and Average Relative Error
(ARE), to evaluate the similarity between original and estimated
flow rate curves. The formulas of the metrics are introduced in
Appendix E. For a workload containing many flows, we use the
above metrics for each flow and calculate the average value as the
metric of the workload.

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Table 1: Resource usage of a full version WaveSketch with a

heavy part (h=256, L=8, K=64) and a light part (w=256, L=8,

K=64, D=1).

Resource Usage Percentage

Exact Match Input xbar 248 12.11%
Hash Bit 752 11.3%
Gateway 29 11.33%
SRAM 134 10.31%
Map RAM 98 12.5%
VLIW Instr 75 14.65%
Stateful ALU 49 76.56%

Accuracy on the network-wide simulation workloads. As
shown in Figure 11 and Figure 12, WaveSketch performs better
on all four metrics. The advantage is more evident with a smaller
memory. In the 15%-load Hadoop workload, using 200 KB memory,
WaveSketch improves accuracy on ARE by 7.69-8.07x, energy simi-
larity by 4.17-57.02x, and cosine similarity by 3.5-7.73x, compared
to the baseline solutions. Besides, the accuracy of hardware-version
WaveSketch (WaveSketch-HW) is close to the ideal version. More
accuracy results can be found in Appendix F.
Measurement fidelity on testbed flow behaviors. As shown in
Figure 13, we compare the reconstruction performance of WaveS-
ketch and OmniWindow-Avg on a single RDMA flow. We set 𝐾
to 32 for WaveSketch and allocated the same amount of memory
for OmniWindow-Avg. We find WaveSketch can focus on the most
dramatic part of rate changes, while OmniWindow-Avg easily loses
some key information, such as peaks and sharp drops.
Bandwidth usage. The bandwidth overhead is around 80 Mbps in
our simulation environment with 16 hosts when uploading 200-KB
WaveSketch every 20 ms. On average, it is about 5 Mbps per host. If
the topology scale does not significantly affect a single host’s traffic
scale, this result applies to larger-scale topologies. Using the same
workload, we compare the bandwidth cost of WaveSketch with
Valinor [49] and Lumina [66]. With head-only mirroring of 64B
per packet, their average bandwidth is around 1.98 Gbps per host.
As for the task on measuring microsecond-level flow rate curves,
WaveSketch achieves less than 10% average relative error and more
than 99% cosine similarity while utilizing 0.253% of the bandwidth
required by the solutions above.
Hardware resource occupancy. We implement WaveSketch-HW
on a Tofino2 chip, which verifies the WaveSketch-HW can measure
traffic at line rate on a programmable NIC with a similar architec-
ture. Table 1 presents the hardware resource usage of a full version
WaveSketch. Overall, the WaveSketch hardware version utilizes a
moderate amount of resources. Notably, the Stateful ALU (SALU) is
the most consumed component, accounting for 76.56% of the usage.
This is because each variable in a bucket requires a separate SALU.
Fortunately, increasing the number of buckets (𝑊) and retained
coefficients (𝐾) does not result in an increased SALU usage.

7.2 Evaluation on µEvent Detection

Settings. We run RoCEv2 traffic with the DCQCN congestion con-
trol algorithm enabled. The parameters of the DCQCN algorithm
remain consistent with the original paper [75]. We enable ECN
marking on switches with the KMin threshold set to 20 KiB, the

KMax threshold set to 200 KiB, and the maximum marking proba-
bility set to 0.01.
Recall of transient congestion events. We evaluated event cap-
ture with different sampling rates. As shown in Figure 14a-14c, the
more severe the congestion (i.e., larger maximum queue lengths),
the higher the probability of the event being captured. When queue
congestion exceeds the KMax threshold, even with a sampling
probability of 1/64, the recall rate can still reach 99.2%.
Coverage of event participants.As shown in Figure 14d-Figure 14f,
we can collect more flows as congestion increases. In 35%-load
WebSearch workload, for congestions exceeding the ECN KMax
threshold, we collect an average of 11.1 flows under 1/64 sampling
rate, which covers 73% of flows compared to no sampling, sufficient
for events replay as presented in § 6.2. Reducing the sampling rate
does not significantly reduce the number of captured heavy flows
because they usually have more packets. However, the increase in
the proportion of small flows will reduce the recall rate of flows.
As shown in Figure 14e and Figure 14f, for a Hadoop workload
with a relatively large number of small flows, the number of flows
captured at a 1/64 sampling rate is less than 50% of the actual total
number of flows.
Bandwidth overhead. As shown in Figure 15, we find the band-
width gradually decreases to 31-82 Mbps per switch when using
a 1/64 sampling rate. The Hadoop workload occupies more band-
width because its average flow length is small. Under the same
load, this workload generates more flows, thereby increasing the
probability of congestion.

8 DISCUSSION

Can WaveSketch be implemented on other platforms? Cur-
rently, we implementWaveSketch on CPUs and P4. Implementation
for other platforms is in progress. For instance, the CPU version can
be adapted to ARM-based programmable NICs [3] with some opti-
mization efforts. Moreover, the hardware version of WaveSketch
can be applied to programmable platforms like FPGA [31].
Limitations on flow rate compression.WaveSketch can achieve
an effective compression ratio under the microsecond-level time
granularity between 1 to 100 µs for a 100 Gbps level network. How-
ever, a time granularity that is either too coarse or too fine can
diminish the effectiveness of the compression. For a too-coarse
granularity (e.g., 100’s ms), there is not a sufficient sequence length
of flow rate for compression. For a nanosecond-level granularity
less than the packet sending interval, the flow rate curve will appear
as discrete points, causing no waveform regularity to be captured
by the wavelet transform.
Limitations on network congestion detection. µMon’s con-
gestion event capture and replay rely on collecting CE-marked
packets. This method focuses more on the behavior of heavy flows
during severe congestion. Due to its threshold-based and sampling
strategy, µMon may omit some information regarding minor con-
gestions and small flows. Besides, µMon replays congestion events
by conducting offline collaborative analysis with the fine-grained
flow rate curves measured in end hosts. It cannot precisely query
the contribution of flows to queues in real-time and then take im-
mediate control actions like ConQuest [12]. In contrast, µMon’s
strengths lie in performing cause/effect analysis of events over an
extended time range, as presented in Figure 10c.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

50 100 150 200 250
Maximum Queue Length (KB)

0.0

0.5

1.0

R
ec

al
l

kmin kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(a) Congestion Recall (35%-load WebSearch)

50 100 150 200 250
Maximum Queue Length (KB)

0.0

0.5

1.0

R
ec

al
l

kmin kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(b) Congestion Recall (15%-load Hadoop)

50 100 150 200 250
Maximum Queue Length (KB)

0.0

0.5

1.0

R
ec

al
l

kmin kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(c) Congestion Recall (35%-load Hadoop)

50 100 150 200 250
Maximum Queue Length (KB)

0

5

10

15

Av
g.

 F
lo

w
 N

um

kmin

kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(d) Captured Flow (35%-load WebSearch)

50 100 150 200 250
Maximum Queue Length (KB)

0

5

10

Av
g.

 F
lo

w
 N

um

kmin
kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(e) Captured Flow (15%-load Hadoop)

50 100 150 200 250
Maximum Queue Length (KB)

0
10
20
30

Av
g.

 F
lo

w
 N

um

kmin

kmax

p=1/1
p=1/4

p=1/16
p=1/64

p=1/128
p=1/256

(f) Captured Flow (35%-load Hadoop)

Figure 14: Recall Rate of Congestion Events and the Number of Captured Flows

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128
Sampling Ratio

0.0

2.5

5.0

B
w

. C
os

t (
G

bp
s) Facebook Hadoop 15% load

Facebook Hadoop 35% load
Web Search 15% load
Web Search 35% load

Figure 15: Max bandwidth cost per switch

Future work.We try to further reduce the resource footprint of the
WaveSketch hardware versionwith technologies like SketchLib [40]
and accelerate the CPU version with techniques like Agg-Evict [72]
and SIMD instructions. Besides, we will apply µMon to capture
microsecond-level characteristics in production environments.

9 RELATEDWORK

Application traffic measurement. State-of-the-art measurement
systems, such as Trumpet [39], OmniWindow [53], UnivMon [35],
and sketching algorithms [24, 26, 27, 39, 53, 63, 71] focus on im-
proving the measurement system’s versatility, accuracy, or perfor-
mance. LightGuardian [70] adopts network-wide sketch deploy-
ments and collects sketchlets in an in-band fashion to achieve the
full-visibility and lightweight criteria. However, due to the lack of a
time-compressing mechanism, refining their measurement window
to the microsecond level results in a proportional increase in mem-
ory and bandwidth overhead. NZE sketches [25] cleverly regard
sketching measurement as a compressive sensing [9] process to im-
prove sketch accuracy in a single measurement window. However,
they do not delve into multi-window temporal information and
perform an actual compressing process. Persistent sketches [60]
introduces the piecewise-linear approximations (PLA) method in-
volving the half-plane intersection of two polygons, which also
poses challenges for its implementation in the data plane. Vali-
nor [49] and Lumina [66] analyze host-stack burstness by tracing
all packets or sk_buff arriving events. Millisampler [20] captures
aggregate information such as total transmitted and received bytes
on a port or queue instead of tracking per-flow rate variations

within µMon. The wavelet-based compression has the potential
to reduce its memory usage. [64] is an orthogonal work that ad-
justs the sampling frequency of measurement epochs based on the
Nyquist-Shannon theorem to reduce data waste. In case continuous
monitoring is non-compulsory, µMon can use the sampling method
to activate microsecond-level monitoring with a specific frequency.
Network event detection.Commodity switches like Cisco’s Nexus
5600 and Arista’s 7150S support congestion monitoring. [68] mea-
sures fine-grained network congestion through poll switch statis-
tics on the control plane. However, they lack detailed information
about the event’s cause. The advent of programmable switches has
enabled the monitoring of network events by directly observing
queues and deploying algorithms in the data plane. INT [54]) can get
per-packet queue information but introduces significant bandwidth
overhead. SIMON [19] accurately senses network status at hosts.
BurstRadar [29], ConQuest [12], Snappy [11] can effectively capture
information about flows when congestion occurs. Mantis [65] is a
framework for implementing fine-grained reactive behavior on to-
day’s programmable switches. Marple [41] and Sonata [22] compile
data flow operators into programmable switches to perform teleme-
try tasks. However, they struggle to provide the microsecond-level
rate changes, making it challenging to analyze these events’ causes
and effects in depth.

10 CONCLUSION

We propose µMon, a novel microsecond-level network monitoring
system for data centers. µMon accurately measures microsecond-
level flow rates with WaveSketch and captures transient congestion
events on commodity hardware switches. The experimental results
show that the proposed approaches allow us to analyze the micro-
characteristics of network traffic, providing micro-scale insights
into network management, both with acceptable overhead.

ACKNOWLEDGMENTS

We thank our shepherd, Soudeh Ghorbani, and the anonymous
reviewers for their constructive feedback. This research is supported
by the National Natural Science Foundation of China under Grant
Numbers 62325205, 62072228, and 62172204.

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES

[1] [n. d.]. Configuring a User-Defined ACL - S1720, S2700, S5700,
and S6720 V200R011C10 Configuration Guide - Security - Huawei.
https://support.huawei.com/enterprise/en/doc/EDOC1000178177/fea6d191/
configuring-a-user-defined-acl

[2] [n. d.]. Example for Configuring ACL-based Remote Traffic Mirror-
ing - S1720, S2700, S5700, and S6720 V200R011C10 Configuration
Guide - Network Management and Monitoring - Huawei. https:
//support.huawei.com/enterprise/en/doc/EDOC1000178174/cbfae336/example-
for-configuring-acl-based-remote-traffic-mirroring

[3] [n. d.]. Intel® Infrastructure Processing Unit. https://www.intel.com/content/
www/us/en/products/details/network-io/ipu/e2000-asic.html

[4] [n. d.]. Interface and Hardware Component Configuration Guide for
Cisco NCS 5500 Series Routers, IOS XR Release 7.7.x - Configuring Traf-
fic Mirroring [Cisco Network Convergence System 5500 Series]. https:
//www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/77x/b-interfaces-
hardware-component-cg-ncs5500-77x/configuring-traffic-mirroring.html

[5] [n. d.]. Perftest Package. https://enterprise-support.nvidia.com/s/article/perftest-
package

[6] 1985. Network Time Protocol (NTP). Request for Comments RFC 958. Internet
Engineering Task Force. https://doi.org/10.17487/RFC0958 Num Pages: 14.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed
congestion-aware load balancing for datacenters. In Proceedings of the 2014 ACM
conference on SIGCOMM (SIGCOMM ’14). Association for Computing Machinery,
New York, NY, USA, 503–514. https://doi.org/10.1145/2619239.2626316

[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 conference
(SIGCOMM ’10). Association for Computing Machinery, New York, NY, USA,
63–74. https://doi.org/10.1145/1851182.1851192

[9] Richard G. Baraniuk. 2007. Compressive Sensing [Lecture Notes]. IEEE Signal
Processing Magazine 24, 4 (July 2007), 118–121. https://doi.org/10.1109/MSP.2007.
4286571 Conference Name: IEEE Signal Processing Magazine.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review 44, 3 (July 2014), 87–95. https:
//doi.org/10.1145/2656877.2656890

[11] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-
tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings
of the Afternoon Workshop on Self-Driving Networks (SelfDN 2018). Association
for Computing Machinery, New York, NY, USA, 22–28. https://doi.org/10.1145/
3229584.3229586

[12] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rot-
tenstreich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-grained queue
measurement in the data plane. In Proceedings of the 15th International Con-
ference on Emerging Networking Experiments And Technologies (CoNEXT ’19).
Association for Computing Machinery, New York, NY, USA, 15–29. https:
//doi.org/10.1145/3359989.3365408

[13] Cisco. [n. d.]. Cisco Nexus 3550-F Fusion User Guide - mirrorMirror and
Timestamping - Fusion [Cisco Nexus 3550-F High Precision Timestamping
Switch]. https://www.cisco.com/c/en/us/td/docs/dcn/nexus3550/3550-f/sw/user-
guide/cisco-nexus-3550-f-fusion-user-guide/mirror.html

[14] Benoît Claise. 2004. Cisco Systems NetFlow Services Export Version 9. Request for
Comments RFC 3954. Internet Engineering Task Force. https://doi.org/10.17487/
RFC3954 Num Pages: 33.

[15] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(April 2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[16] Mark Fedor, Martin Lee Schoffstall, Jeff D. Case, and James R. Davin. 1989. Simple
Network Management Protocol (SNMP). Request for Comments RFC 1098. Internet
Engineering Task Force. https://doi.org/10.17487/RFC1098 Num Pages: 34.

[17] Yixiao Feng, Sourav Panda, Sameer G Kulkarni, K. K. Ramakrishnan, and Nick
Duffield. 2020. A SmartNIC-Accelerated Monitoring Platform for In-band Net-
work Telemetry. In 2020 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN. 1–6. https://doi.org/10.1109/LANMAN49260.2020.
9153279 ISSN: 1944-0375.

[18] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2018. Exploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization. 81–94. https://www.usenix.org/conference/
nsdi18/presentation/geng&lang=en

[19] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2019. {SIMON}: A Simple and Scalable Method for Sensing,
Inference and Measurement in Data Center Networks. 549–564. https://www.
usenix.org/conference/nsdi19/presentation/geng

[20] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring, Srikanth Sun-
daresan, and Sanjay Rao. 2022. A microscopic view of bursts, buffer contention,
and loss in data centers. In Proceedings of the 22nd ACM Internet Measurement
Conference (IMC ’22). Association for Computing Machinery, New York, NY, USA,
567–580. https://doi.org/10.1145/3517745.3561430

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 202–215. https://doi.org/10.
1145/2934872.2934908

[22] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: query-driven streaming network telemetry. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18). Association for Computing Machinery, New
York, NY, USA, 357–371. https://doi.org/10.1145/3230543.3230555

[23] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 29–42. https:
//doi.org/10.1145/3098822.3098825

[24] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. SketchVisor: Robust Network Measurement for Software
Packet Processing. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). Association for Computing Ma-
chinery, New York, NY, USA, 113–126. https://doi.org/10.1145/3098822.3098831

[25] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu,
and Gong Zhang. 2021. Toward {Nearly-Zero-Error} Sketching via Compressive
Sensing. 1027–1044. https://www.usenix.org/conference/nsdi21/presentation/
huang

[26] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu, and Yungang
Bao. 2020. OmniMon: Re-architecting Network Telemetry with Resource Effi-
ciency and Full Accuracy. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 404–421. https:
//doi.org/10.1145/3387514.3405877

[27] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe:
quantiles sketch fully in the data plane. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies (CoNEXT
’19). Association for Computing Machinery, New York, NY, USA, 285–291.
https://doi.org/10.1145/3359989.3365433

[28] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. {mTCP}: a Highly Scalable User-
level {TCP} Stack for Multicore Systems. 489–502. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/jeong

[29] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-time Microburst Monitoring for Datacenter Networks.
In Proceedings of the 9th Asia-PacificWorkshop on Systems (APSys ’18). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
3265723.3265731

[30] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. 2019. Precise Time-
synchronization in the Data-Plane using Programmable Switching ASICs. In
Proceedings of the 2019 ACM Symposium on SDN Research (SOSR ’19). Association
for Computing Machinery, New York, NY, USA, 8–20. https://doi.org/10.1145/
3314148.3314353

[31] Ian Kuon, Russell Tessier, and Jonathan Rose. 2008. FPGA Architecture: Survey
and Challenges. Foundations and Trends® in Electronic Design Automation 2,
2 (April 2008), 135–253. https://doi.org/10.1561/1000000005 Publisher: Now
Publishers, Inc..

[32] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M. Swift, and T. V. Lakshman. 2017. UNO: uniflying host and smart NIC
offload for flexible packet processing. In Proceedings of the 2017 Symposium on
Cloud Computing (SoCC ’17). Association for Computing Machinery, New York,
NY, USA, 506–519. https://doi.org/10.1145/3127479.3132252

[33] N. Littlestone and M. K. Warmuth. 1994. The Weighted Majority Algorithm.
Information and Computation 108, 2 (Feb. 1994), 212–261. https://doi.org/10.
1006/inco.1994.1009

[34] Kexin Liu, Chen Tian, Qingyue Wang, Hao Zheng, Peiwen Yu, Wenhao Sun,
Yonghui Xu, Ke Meng, Lei Han, Jie Fu, Wanchun Dou, and Guihai Chen. 2021.
Floodgate: taming incast in datacenter networks. In Proceedings of the 17th In-
ternational Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’21). Association for Computing Machinery, New York, NY, USA, 30–44.
https://doi.org/10.1145/3485983.3494854

[35] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,

https://support.huawei.com/enterprise/en/doc/EDOC1000178177/fea6d191/configuring-a-user-defined-acl
https://support.huawei.com/enterprise/en/doc/EDOC1000178177/fea6d191/configuring-a-user-defined-acl
https://support.huawei.com/enterprise/en/doc/EDOC1000178174/cbfae336/example-for-configuring-acl-based-remote-traffic-mirroring
https://support.huawei.com/enterprise/en/doc/EDOC1000178174/cbfae336/example-for-configuring-acl-based-remote-traffic-mirroring
https://support.huawei.com/enterprise/en/doc/EDOC1000178174/cbfae336/example-for-configuring-acl-based-remote-traffic-mirroring
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/77x/b-interfaces-hardware-component-cg-ncs5500-77x/configuring-traffic-mirroring.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/77x/b-interfaces-hardware-component-cg-ncs5500-77x/configuring-traffic-mirroring.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/77x/b-interfaces-hardware-component-cg-ncs5500-77x/configuring-traffic-mirroring.html
https://enterprise-support.nvidia.com/s/article/perftest-package
https://enterprise-support.nvidia.com/s/article/perftest-package
https://doi.org/10.17487/RFC0958
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
https://www.cisco.com/c/en/us/td/docs/dcn/nexus3550/3550-f/sw/user-guide/cisco-nexus-3550-f-fusion-user-guide/mirror.html
https://www.cisco.com/c/en/us/td/docs/dcn/nexus3550/3550-f/sw/user-guide/cisco-nexus-3550-f-fusion-user-guide/mirror.html
https://doi.org/10.17487/RFC3954
https://doi.org/10.17487/RFC3954
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.17487/RFC1098
https://doi.org/10.1109/LANMAN49260.2020.9153279
https://doi.org/10.1109/LANMAN49260.2020.9153279
https://www.usenix.org/conference/nsdi18/presentation/geng&lang=en
https://www.usenix.org/conference/nsdi18/presentation/geng&lang=en
https://www.usenix.org/conference/nsdi19/presentation/geng
https://www.usenix.org/conference/nsdi19/presentation/geng
https://doi.org/10.1145/3517745.3561430
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098831
https://www.usenix.org/conference/nsdi21/presentation/huang
https://www.usenix.org/conference/nsdi21/presentation/huang
https://doi.org/10.1145/3387514.3405877
https://doi.org/10.1145/3387514.3405877
https://doi.org/10.1145/3359989.3365433
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3314148.3314353
https://doi.org/10.1145/3314148.3314353
https://doi.org/10.1561/1000000005
https://doi.org/10.1145/3127479.3132252
https://doi.org/10.1006/inco.1994.1009
https://doi.org/10.1006/inco.1994.1009
https://doi.org/10.1145/3485983.3494854

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

101–114. https://doi.org/10.1145/2934872.2934906
[36] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,

Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: a microkernel approach
to host networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 399–413. https://doi.org/10.1145/3341301.3359657

[37] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. ACM
SIGCOMM Computer Communication Review 45, 4 (Aug. 2015), 537–550. https:
//doi.org/10.1145/2829988.2787510

[38] Alistair Moffat. 2019. Huffman Coding. Comput. Surveys 52, 4 (Aug. 2019),
85:1–85:35. https://doi.org/10.1145/3342555

[39] MasoudMoshref, Minlan Yu, RameshGovindan, andAmin Vahdat. 2016. Trumpet:
Timely and Precise Triggers in Data Centers. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16). Association for Computing Machinery,
New York, NY, USA, 129–143. https://doi.org/10.1145/2934872.2934879

[40] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.
2022. {SketchLib}: Enabling Efficient Sketch-based Monitoring on Programmable
Switches. 743–759. https://www.usenix.org/conference/nsdi22/presentation/
namkung

[41] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’17). Association for Computing Machinery, New York, NY,
USA, 85–98. https://doi.org/10.1145/3098822.3098829

[42] Mark R. Nelson. 1989. LZW data compression. Dr. Dobb’s Journal 14, 10 (Oct.
1989), 29–36.

[43] Arista Networks. [n. d.]. Arista Platforms 400GbE - 100GbE - 40GbE - 25GbE -
10GbE - Arista - Arista. https://www.arista.com/en/products/platforms

[44] Henri J. Nussbaumer. 1982. The Fast Fourier Transform. In Fast Fourier Trans-
form and Convolution Algorithms, Henri J. Nussbaumer (Ed.). Springer, Berlin,
Heidelberg, 80–111. https://doi.org/10.1007/978-3-642-81897-4_4

[45] Joseph O’Rourke. 1981. An on-line algorithm for fitting straight lines between
data ranges. Commun. ACM 24, 9 (Sept. 1981), 574–578. https://doi.org/10.1145/
358746.358758

[46] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: congestion signals are simple and effective for network load
balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA, 207–218. https:
//doi.org/10.1145/3544216.3544226

[47] Matthew Roughan. 2010. A case study of the accuracy of SNMP measurements.
Journal of Electrical and Computer Engineering 2010 (Jan. 2010), 33:1–33:7. https:
//doi.org/10.1155/2010/812979

[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 123–137. https:
//doi.org/10.1145/2785956.2787472

[49] Erfan Sharafzadeh, Sepehr Abdous, and Soudeh Ghorbani. 2023. Understanding
the impact of host networking elements on traffic bursts. 237–254. https://www.
usenix.org/conference/nsdi23/presentation/sharafzadeh

[50] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
{FlexTOE}: Flexible {TCP} Offload with {Fine-Grained} Parallelism. 87–102. https:
//www.usenix.org/conference/nsdi22/presentation/shashidhara

[51] M.J. Shensa. 1992. The discrete wavelet transform: wedding the a trous andMallat
algorithms. IEEE Transactions on Signal Processing 40, 10 (Oct. 1992), 2464–2482.
https://doi.org/10.1109/78.157290

[52] Radomir S. Stanković and Bogdan J. Falkowski. 2003. The Haar wavelet transform:
its status and achievements. Computers & Electrical Engineering 29, 1 (Jan. 2003),
25–44. https://doi.org/10.1016/S0045-7906(01)00011-8

[53] Haifeng Sun, Jiaheng Li, Jintao He, Jie Gui, and Qun Huang. 2023. OmniWindow:
A General and Efficient Window Mechanism Framework for Network Telemetry.
In Proceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 867–880. https:
//doi.org/10.1145/3603269.3604847

[54] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying Miao,
Xiaoxi Liu, and Na Li. 2021. In-band Network Telemetry: A Survey. Computer
Networks 186 (Feb. 2021), 107763. https://doi.org/10.1016/j.comnet.2020.107763

[55] Lu Tang, Qun Huang, and Patrick P. C. Lee. 2019. MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, Paris,
France, 2026–2034. https://doi.org/10.1109/INFOCOM.2019.8737499

[56] Maroun Tork, Lina Maudlej, and Mark Silberstein. 2020. Lynx: A SmartNIC-
driven Accelerator-centric Architecture for Network Servers. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). Association for Computing Ma-
chinery, New York, NY, USA, 117–131. https://doi.org/10.1145/3373376.3378528

[57] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S.
Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. 2020. Fast Packet
Processing with eBPF and XDP: Concepts, Code, Challenges, and Applications.
Comput. Surveys 53, 1 (Feb. 2020), 16:1–16:36. https://doi.org/10.1145/3371038

[58] Yunlan Wang, Ming Lan, Tianhai Zhao, Zhaokui Gao, and Min Xie. 2020. Com-
bining RTT and ECN for RoCEv2 Protocol. In Proceedings of the 2020 4th High
Performance Computing and Cluster Technologies Conference & 2020 3rd In-
ternational Conference on Big Data and Artificial Intelligence (HPCCT &
BDAI ’20). Association for Computing Machinery, New York, NY, USA, 158–164.
https://doi.org/10.1145/3409501.3409509

[59] Steve T. Watt, Shankar Achanta, Hamza Abubakari, Eric Sagen, Zafer Korkmaz,
and Husam Ahmed. 2015. Understanding and applying precision time protocol.
In 2015 Saudi Arabia Smart Grid (SASG). 1–7. https://doi.org/10.1109/SASG.2015.
7449285

[60] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2015. Persistent
Data Sketching. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15). Association for Computing Machinery,
New York, NY, USA, 795–810. https://doi.org/10.1145/2723372.2749443

[61] David Wetherall, Abdul Kabbani, Van Jacobson, Jim Winget, Yuchung Cheng,
Charles B. Morrey III, Uma Moravapalle, Phillipa Gill, Steven Knight, and Amin
Vahdat. 2023. Improving Network Availability with Protective ReRoute. In
Proceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23). As-
sociation for Computing Machinery, New York, NY, USA, 684–695. https:
//doi.org/10.1145/3603269.3604867

[62] Kaicheng Yang, YuhanWu, Ruijie Miao, Tong Yang, Zirui Liu, Zicang Xu, Rui Qiu,
Yikai Zhao, Hanglong Lv, Zhigang Ji, and Gaogang Xie. 2023. ChameleMon: Shift-
ing Measurement Attention as Network State Changes. In Proceedings of the ACM
SIGCOMM 2023 Conference (ACM SIGCOMM ’23). Association for Computing Ma-
chinery, New York, NY, USA, 881–903. https://doi.org/10.1145/3603269.3604850

[63] Tong Yang, Jie Jiang, Peng Liu, QunHuang, Junzhi Gong, Yang Zhou, Rui Miao, Xi-
aoming Li, and Steve Uhlig. 2018. Elastic sketch: adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’18). Association for Computing Ma-
chinery, New York, NY, USA, 561–575. https://doi.org/10.1145/3230543.3230544

[64] Nofel Yaseen, Behnaz Arzani, Krishna Chintalapudi, Vaishnavi Ranganathan,
Felipe Frujeri, Kevin Hsieh, Daniel S. Berger, Vincent Liu, and Srikanth Kandula.
2021. Towards a Cost vs. Quality Sweet Spot for Monitoring Networks. In
Proceedings of the 20th ACM Workshop on Hot Topics in Networks (HotNets ’21).
Association for Computing Machinery, New York, NY, USA, 38–44. https://doi.
org/10.1145/3484266.3487390

[65] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Pro-
grammable Switches. In Proceedings of the Annual conference of the ACM Spe-
cial Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication (SIGCOMM ’20). As-
sociation for Computing Machinery, New York, NY, USA, 296–309. https:
//doi.org/10.1145/3387514.3405870

[66] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel, Vladimir Braverman, and Xin
Jin. 2023. Understanding the Micro-Behaviors of Hardware Offloaded Network
Stacks with Lumina. In Proceedings of the ACM SIGCOMM 2023 Conference (ACM
SIGCOMM ’23). Association for Computing Machinery, New York, NY, USA,
1074–1087. https://doi.org/10.1145/3603269.3604837

[67] Dengsheng Zhang. 2019. Wavelet Transform. In Fundamentals of Image Data
Mining: Analysis, Features, Classification and Retrieval, Dengsheng Zhang (Ed.).
Springer International Publishing, Cham, 35–44. https://doi.org/10.1007/978-3-
030-17989-2_3

[68] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Proceedings of the 2017
InternetMeasurement Conference (IMC ’17). Association for ComputingMachinery,
New York, NY, USA, 78–85. https://doi.org/10.1145/3131365.3131375

[69] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin
Cui. 2020. On-off sketch: a fast and accurate sketch on persistence. Proceedings
of the VLDB Endowment 14, 2 (Oct. 2020), 128–140. https://doi.org/10.14778/
3425879.3425884

[70] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian
Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, and Nicholas Zhang. 2021. {Light-
Guardian}: A {Full-Visibility}, Lightweight, In-band Telemetry System Using
Sketchlets. 991–1010. https://www.usenix.org/conference/nsdi21/presentation/
zhao

[71] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen Zhang,
Wanchun Dou, and Guihai Chen. 2022. FlyMon: enabling on-the-fly task recon-
figuration for network measurement. In Proceedings of the ACM SIGCOMM 2022
Conference (SIGCOMM ’22). Association for Computing Machinery, New York,
NY, USA, 486–502. https://doi.org/10.1145/3544216.3544239

https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/3342555
https://doi.org/10.1145/2934872.2934879
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://doi.org/10.1145/3098822.3098829
https://www.arista.com/en/products/platforms
https://doi.org/10.1007/978-3-642-81897-4_4
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1155/2010/812979
https://doi.org/10.1155/2010/812979
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://www.usenix.org/conference/nsdi23/presentation/sharafzadeh
https://www.usenix.org/conference/nsdi23/presentation/sharafzadeh
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://doi.org/10.1109/78.157290
https://doi.org/10.1016/S0045-7906(01)00011-8
https://doi.org/10.1145/3603269.3604847
https://doi.org/10.1145/3603269.3604847
https://doi.org/10.1016/j.comnet.2020.107763
https://doi.org/10.1109/INFOCOM.2019.8737499
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3409501.3409509
https://doi.org/10.1109/SASG.2015.7449285
https://doi.org/10.1109/SASG.2015.7449285
https://doi.org/10.1145/2723372.2749443
https://doi.org/10.1145/3603269.3604867
https://doi.org/10.1145/3603269.3604867
https://doi.org/10.1145/3603269.3604850
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1145/3484266.3487390
https://doi.org/10.1145/3484266.3487390
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3603269.3604837
https://doi.org/10.1007/978-3-030-17989-2_3
https://doi.org/10.1007/978-3-030-17989-2_3
https://doi.org/10.1145/3131365.3131375
https://doi.org/10.14778/3425879.3425884
https://doi.org/10.14778/3425879.3425884
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://doi.org/10.1145/3544216.3544239

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[72] Yang Zhou, Omid Alipourfard, Minlan Yu, and Tong Yang. 2018. Accelerating
network measurement in software. ACM SIGCOMM Computer Communication
Review 48, 3 (Sept. 2018), 2–12. https://doi.org/10.1145/3276799.3276800

[73] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng Zhang, Dennis Cai,
Ming Zhang, and Mingwei Xu. 2020. Flow Event Telemetry on Programmable
Data Plane. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication (SIGCOMM ’20). Association for Computing
Machinery, New York, NY, USA, 76–89. https://doi.org/10.1145/3387514.3406214

[74] Lingjun Zhu, Yifan Shen, Erci Xu, Bo Shi, Ting Fu, Shu Ma, Shuguang Chen,
Zhongyu Wang, Haonan Wu, Xingyu Liao, Zhendan Yang, Zhongqing Chen, Wei
Lin, Yijun Hou, Rong Liu, Chao Shi, Jiaji Zhu, and Jiesheng Wu. 2023. Deploying
User-space {TCP} at Cloud Scale with {LUNA}. 673–687. https://www.usenix.
org/conference/atc23/presentation/zhu-lingjun

[75] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
ACM SIGCOMM Computer Communication Review 45, 4 (Aug. 2015), 523–536.
https://doi.org/10.1145/2829988.2787484

[76] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.
Packet-Level Telemetry in Large Datacenter Networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 479–491. https:
//doi.org/10.1145/2785956.2787483

APPENDIX

Appendices are supporting material that has not been peer reviewed

A PROOF OF COEFFICIENT SELECTION

METHOD

The discrete Haar wavelet transform has the following properties:

Lemma A.1. Under one level of the inverse transform, the L2 dis-
tance from the results to the actual values equals the L2 distance from
the coefficients to the actual coefficients.

Proof. For each pair of approximation coefficient and detail
coefficient, let the actual values be (𝛼∗, 𝛿∗) respectively. Therefore,
the actual values after the inverse transform should be

√
2
2

(
𝛼∗ ± 𝛿∗

)
Assume the process received (𝛼, 𝛿) instead of the actual coefficients.
The squared L2 distance between the coefficients is(

𝛼∗ − 𝛼
)2 + (

𝛿∗ − 𝛿
)2

Since the results after the inverse transform are
√
2
2
(𝛼 ± 𝛿)

The squared L2 distance will be(√
2
2

(
𝛼∗ + 𝛿∗

)
−
√
2
2
(𝛼 + 𝛿)

)2
+

(√
2
2

(
𝛼∗ − 𝛿∗

)
−
√
2
2
(𝛼 − 𝛿)

)2
after the inverse transform. Obviously the latter can be reduced
to the former, so the equality holds for all coefficients and the
results. □

Corollary A.2. In inverse transform, the L2 distance from the
final results to the actual values equals the L2 distance from the
coefficients to the actual coefficients.

Proof. By Lemma A.1, the L2 distance remains the same in
one level. Apply Lemma A.1 to all levels in order can prove this
corollary. □

TheoremA.3. In wavelet compression, if𝑘 coefficients are recorded
while the rest are set to 0, retaining coefficients with the largest abso-
lute value yields the smallest L2 distance between the result and the
ground truth.

Proof. For any coefficient 𝑐 , there are 2 cases:
(1) 𝑐 is retained. The squared L2 distance is 0 in this case.
(2) 𝑐 is set to 0. The squared L2 distance is 𝑐2 in this case.

By Corollary A.2, Minimizing the L2 distance of the result requires
minimizing the L2 distance of the coefficients. For any coefficients
𝑐 and 𝑐′ satisfying |𝑐 | > |𝑐′ |, if 𝑐 is set to 0 instead of 𝑐′, the squared
L2 distance should increase by 𝑐2 − 𝑐′2. Therefore, retaining the
coefficients with the largest absolute value yields optimal results.

□

B PROOF OF COMPUTATIONAL COMPLEXITY

Here, we give an amortized analysis proof of computational over-
head. We are given a total of𝑚 packets, divided into 𝑛 windows,
each containing an average of𝑚/𝑛 packets. In each window, the
update cost for𝑚/𝑛 − 1 packets is 𝑂 (1), while the update cost of
the last packet is 𝑂 (𝐿) detail coefficient computation and overhead
on coefficient compression. The compression overhead depends on
the number of generated detail coefficients in this window. For the
𝑙-th layer, one wavelet coefficient is generated every 2𝑙 window.
Therefore, the total number of detail coefficients 𝑑 is

𝑑 =
𝑛

21
+ 𝑛

22
+ · · · + 𝑛

2𝐿
= 𝑛(1 − 1

2𝐿
) < 𝑛

Since each coefficient needs to go through a 𝑙𝑜𝑔(𝐾) coefficient com-
pression process, the total cost of transformation and compression
is 𝐿 · 𝑛 + 𝑛 · 𝑙𝑜𝑔(𝐾). For 𝑚 packets, the total update overhead is
𝑂 (𝑚 − 𝑛 + 𝐿 · 𝑛 + 𝑛 · 𝑙𝑜𝑔(𝐾)). On average, the cost of each packet
update is up to:

𝑂 (𝑚 − 𝑛
𝑚
+ 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))

𝑚
)

Since 𝑛 < 𝑚, we can get the computational complexity as:

𝑂 (1 + 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))
𝑚

) = 𝑂 (1 + 𝜖 (𝐿 + 𝑙𝑜𝑔(𝐾)))

where 𝜖 = 𝑛
𝑚 . When the network load is heavy, this means that

𝑛 ≪𝑚, the update overhead of the algorithm is:

𝑂 (1 + 𝑛(𝐿 + 𝑙𝑜𝑔(𝐾))
𝑚

) ≈ 𝑂 (1)

This completes our amortized analysis.

C RECONSTRUCTION ALGORITHM

Here, we give the pseudocode of our reconstruction stage in Algo-
rithm 2. We first process the remaining un-transformed counters,
then align the entire sequence to the exponential times of 2 by
padding 0 and completing the corresponding number of compres-
sions. The reconstruction process initiates at the deepest level. The
corresponding detail coefficients are upsampled to reconstruct the
approximation coefficients at shallower levels. Specifically, for the

https://doi.org/10.1145/3276799.3276800
https://doi.org/10.1145/3387514.3406214
https://www.usenix.org/conference/atc23/presentation/zhu-lingjun
https://www.usenix.org/conference/atc23/presentation/zhu-lingjun
https://doi.org/10.1145/2829988.2787484
https://doi.org/10.1145/2785956.2787483
https://doi.org/10.1145/2785956.2787483

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Zheng et al.

Table 2: Simulation Workloads

Workload Websearch Facebook Hadoop
15% Load 25% Load 35% Load 15% Load 25% Load 35% Load

Packets 994480 1661240 2067850 943419 1544687 2132097
Flows 367 625 815 4966 8366 11773

approximation coefficient 𝑎𝑙,𝑖 and detail coefficient 𝑑𝑙,𝑖 of layer
𝑙 , we can derive two approximation coefficients of layer 𝑙 − 1:
𝑎𝑙−1,2𝑖−1 =

𝑎𝑙,𝑖+𝑑𝑙,𝑖
2 and 𝑎𝑙−1,2𝑖 =

𝑎𝑙,𝑖−𝑑𝑙,𝑖
2 , where 𝑖 = 1, . . . , 𝑛2𝑙 . Any

detail coefficients that are not preserved are considered as 0. This it-
erative process continues, utilizing progressively shallower-level de-
tail coefficients until the original signal is completely reconstructed.

Algorithm 2WaveSketch Bucket Reconstruction

1: procedure Reconstruction(𝑤0,A,D)
2: if 𝑤0 == 0 then
3: return [0, 0, · · · , 0] ⊲ no packets
4: end if

5: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑖, 𝑐) ⊲ transform the last counter
6: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑖 + 1
7: 𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙 ← ⌊log2 (𝑙𝑒𝑛𝑔𝑡ℎ − 1)⌋
8: for 𝑗 ← 𝑖 + 1, . . . , 2𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙+1

do

9: 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑗, 0) ⊲ padding the sequence to 2𝑚
10: end for

11: for 𝑙 ← 0, . . . , 𝐿 − 1 do
12: 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑙, _𝑑𝑒𝑡𝑎𝑖𝑙 [𝑙]) ⊲ compress rest coeffs
13: end for

14: 𝑖𝑡𝑒𝑟𝑎𝑡𝑒_𝑛𝑢𝑚 ←𝑚𝑖𝑛(𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙, 𝐿 − 1)
15: for 𝑙 ← 0, . . . , 𝑖𝑡𝑒𝑟𝑎𝑡𝑒_𝑛𝑢𝑚 do

16: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠 ← []
17: 𝑛 = ⌈𝑛/2𝑙+1⌉
18: for 𝑘 ← 0, · · · , 𝑛 − 1 do
19: 𝑎 = A .𝑝𝑜𝑝 (0)
20: for each detail 𝑑 in D with level 𝑙 do
21: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎+𝑑2)
22: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎−𝑑2)
23: end for

24: if no detail is retained in this level then
25: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎2)
26: _𝑎𝑝𝑝𝑟𝑜𝑥𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎2) ⊲ consider detail as zero
27: end if

28: end for

29: 𝐴← _𝑎𝑝𝑝𝑟𝑜𝑥𝑠
30: end for

31: return A
32: end procedure

D WORKLOAD COLLECTION METHOD

For testbed workloads, we use a method similar to Lumina to ob-
serve the flows by time-stamping and mirroring all packets with
a Tofino switch. Additionally, we generate an on-off background
flow to compete with the RDMA flows to induce flow rate changes.

In the simulation workloads, we deploy applications conforming
to the WebSearch and Facebook Hadoop flow size distribution in
a 100 Gbpps fat-tree topology (k=4) deployed on an NS-3 simula-
tor. The flow size distribution of the above workloads is shown in
Figure 16a. We set the link load caused by the workload to 15%,

25%, and 35%, with each running for 20 ms, and define the num-
ber of flows accordingly. We then randomly distribute the flows
to the hosts in the network. Then, we collect 20-ms traces of the
simulation, including application packets, packets marked with
ECN, and all timestamp information. Table 2 shows the number
of packets and flows of each workload. In simulations, flows can
lead to congestion on network links, depending on the inter-arrival
time of the flows and the duration of each flow. To better under-
stand the workloads, we collect the statistics at the interface (or
port) level. Figure 16b shows the distribution of flows’ inter-arrival
time in a TOR switch port. The overall arrival interval of Hadoop
flows is relatively short, with 20% of the flows taking less than 20
microseconds to arrive. In contrast, the overall flow arrival inter-
vals in the WebSearch workload are longer. This is due to the fact
that, at the same link load, the average flow size of the WebSearch
workload is greater. In Figure 16c, these workloads result in sig-
nificant congestion. Despite Hadoop flows having longer arrival
intervals, their extended duration increases the likelihood of con-
gestion. Among these workloads, 35%-load Hadoop experiences the
most congestion, with the queue length exceeding 200KB 6.6% of
the time.

E ACCURACY METRICS

Let 𝑓 (𝑡) and 𝑓 (𝑡) be the true and estimated flow rate curves for a
given flow, where 𝑡 ranges from 1 to 𝑛.

• Euclidean Distance:
√︃
Σ𝑛
𝑡=1 (𝑓 (𝑡) − 𝑓 (𝑡))2. Euclidean distance is

used to measure the straight-line distance between the true and
estimated flow rate curves. The smaller the value of this metric,
the better.
• Cosine Similarity: Σ𝑛

𝑡=1 𝑓 (𝑡) ·𝑓 (𝑡)√
Σ𝑛
𝑡=1 𝑓 (𝑡)2 ·

√︃
Σ𝑛
𝑡=1 𝑓 (𝑡)2

. Cosine similarity is a

measure of similarity between the true and estimated flow rate
curves, which treats them as vectors and measures the cosine
of the angle between them. The closer the value of this metric
is to 1, the better.
• Energy Similarity:

𝐶 (𝑓 , 𝑓) =

√
Σ𝑛
𝑡=1 𝑓 (𝑡)2√︃

Σ𝑛
𝑡=1 𝑓 (𝑡)2

if Σ𝑛
𝑡=1 𝑓 (𝑡)

2 ≤ Σ𝑛
𝑡=1 𝑓 (𝑡)

2

√︃
Σ𝑛
𝑡=1 𝑓 (𝑡)2√

Σ𝑛
𝑡=1 𝑓 (𝑡)2

if Σ𝑛
𝑡=1 𝑓 (𝑡)

2 > Σ𝑛
𝑡=1 𝑓 (𝑡)

2

Energy similarity is used to measure the energy difference
between the estimated and true flow rate curves over. The
closer the value of this metric is to 1, the better.
• ARE (Average Relative Error): 1

𝑛 Σ
𝑛
𝑡=1
| 𝑓 (𝑡)−𝑓 (𝑡) |

𝑓 (𝑡) . The closer the
value of this metric is to 0, the better.

µMon: Empowering Microsecond-level Network Monitoring with Wavelets ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 10000 20000 30000
Flow Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Facebook Hadoop
Websearch

(a) Flow size distribution

0 500 1000 1500 2000
Flow Inter-arrival Time (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hadoop 15% Load
Hadoop 35% Load
WebSearch 15% Load
WebSearch 35% Load

(b) Flow arrival time (port-level)

0 500 1000 1500
Queue Length (KiB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hadoop 15% Load
Hadoop 35% Load
WebSearch 15% Load
WebSearch 35% Load

(c) Burst level (port-level)

Figure 16: Workloads information.

10
1

10
2

10
3

Flow Length

0

20

40

60

80

Eu
cl

id
ea

n
D

is
ta

nc
e Fourier

OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(a) Euclidean Distance

10
1

10
2

10
3

Flow Length

0.0

0.2

0.4

0.6

A
R

E

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(b) ARE

10
1

10
2

10
3

Flow Length

0.98

0.99

1.00

C
os

in
e

Si
m

ila
rit

y

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(c) Cosine Similarity

10
1

10
2

10
3

Flow Length

0.00

0.25

0.50

0.75

1.00

En
er

gy
 S

im
ila

rit
y

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(d) Energy Similarity

Figure 17: Accuracy evaluation on different flow size (WebSearch 25% load, Window Size 8.192 µs).

10
1

10
2

10
3

Flow Length

0

25

50

75

Eu
cl

id
ea

n
D

is
ta

nc
e Fourier

OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(a) Euclidean Distance

10
1

10
2

10
3

Flow Length

0.0

0.2

0.4

0.6

A
R

E

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(b) ARE

10
1

10
2

10
3

Flow Length

0.00

0.25

0.50

0.75

1.00

C
os

in
e

Si
m

ila
rit

y

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(c) Cosine Similarity

10
1

10
2

10
3

Flow Length

0.00

0.25

0.50

0.75

1.00

En
er

gy
 S

im
ila

rit
y

Fourier
OmniWindow-Avg
Persist-CMS
WaveSketch-Ideal
WaveSketch-HW

(d) Energy Similarity

Figure 18: Accuracy evaluation on different flow size (Hadoop 15% load, Window Size 8.192 µs).

F ACCURACY RESULTS

Figure 17 and Figure 18 shows the accuracy of WaveSketch for
flows of different sizes.

Chen Tian, Wanchun Dou, Guihai Chen„

	Abstract
	1 Introduction
	2 Microsecond-Level Network Monitoring
	2.1 Background
	2.2 Objectives and Benefits
	2.3 Challenges

	3 µMon Overview
	4 µFlow Measuring at Hosts
	4.1 Preliminary on Wavelets Transform
	4.2 WaveSketch DESIGN
	4.3 WaveSketch Implementation

	5 µEvent Detection at Switches
	6 µMon Analyzer and Use Cases
	6.1 Network-wide Synchronized Analysis
	6.2 Use Cases

	7 Evaluation
	7.1 Evaluation on µFlow Measurements
	7.2 Evaluation on µEvent Detection

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Proof of Coefficient Selection Method
	B Proof of Computational Complexity
	C Reconstruction Algorithm
	D Workload Collection Method
	E Accuracy Metrics
	F Accuracy Results

